Telephone

Cambridge 55478

CAVENDISH LABORATORY
FREE SCHOOL LANE
CAMBRIDGE
fth June 1953

Wises Rosalind Franklin, Inveics Department, Biribeck College, Tonnington Souare, Ion'on, w.C.I.

Dear Miss Franklin, :

I sm returning the two papers which you so kindly lent to Jim, which as you can imagine I read with very great interest. I am sorry not to have sent them before, but Jim and I had to write a paper before he left for the States, and this kept us very busy. I am enclosing a few comments on the papers and some longer remarks on salt, on Riley and Aster's results, and on calculating structure factors. \quad hat a problem it is!.

With best wishes,
Yours sincerely,

Francis Crick

F. H. C. Crick.

$\because \because e r]$
p. 5 I am not really clear about fibres which only give structure B. How do the water content, interisities and the equatorinl spacing amare with different R.H.?
p. 7 Comparison with Riley Oster. I take it this is Column 4 of their Teuje 1 , or is it column 5?

1. 9 I agree that the phosphates must be accessible. The general evidence suggesting they are on the "outside" seems plausible, but less compelling.
p. 12 I had not realised that calf thymus was the only material to give structure A. Ia this still true? Is it perhaps. due to the superior method of preparation used for calf thymus?

Fner 11
I am not quite clear how one can be certain that the unit cell is truly face-centered monoclinic, and not really. triclinic, with two angles 90°. The point is important because if the unit cell is strictiy C_{2}^{2} one must have the DITA chains in pairs, running in opposite directions.
2.11 I take it that "12. 4 R" is a slip.
0.11 Jerry Donohue is worried because in Fig. 3. there is so Iittle vector density at $x=40 A, z=0$. A more natural choice would have been $x=38, z=0$. As you do not list your observed equatorial spacings, it is difficult to see how things would fit (Incidentally $22 \times 3=38$).. Is the effect perhaps due to the negative contributions from the peaks near $x=44, z=0$. ?
p.15. As you know, we have never believed the anti-helical imrlications of the last paragraph, because of polybenzyl glutamate. Would you call an ll-fold axis a high degree of symmetry?

Jim tells me that you claimed that "the water had only a general lowering effect, and that the La+ wes negligible". This is not strictly correct. For calculating structure factors for the longer syacings it is convenient to allow for the water by taking the average electron density of water as the "zero" of electron density. Thus any group which has the same electron density as water makes no contribution. For each group its average electron density must be calculeted, and that of water subtracted, before its contribution can De given its proper weight. Thus, if the electron density of a base were, say, 1.2 times that of water, only a fraction ($\frac{0.2}{1.2}$) of its electrons would be counted. On the other hand the Hat ion, due to strong electrostrictive, probably has a very small (or negative?) cartial specific volume, and this almost all of its electrons vill count. Thus the effect of one lat may be about the same as that of a base. It is this necessity for allowing for the water which makes structure factor calculations difficult.

Riley and Oster

There seems little dount that at least some of R. and o's long spacings are genuine, and it is a pity that in studying structure P the backstop in your experiment vas placed so that it would hide any such spacings, though one can see you wanted short exposures.

It is interesting to note that the spacings in your
Paper I, plate 6, are almost exactly in the ratio of $3 \overline{1} \div 0$ and $4 \overline{0} 40$ suggested by R. and 0. If it were not for this complication of a longer spacing, one could use their results to obtain the number of
chains in Structure B. Moreover the changes of the intersities of the equatorial reflexions as the spacings increase would be very informative. I don't feel much progress can be made with structure B until the long-spacins fosition is cleared up. I surrise the micelle structure is caused by the lo-fold screw axis of the fibre trying to give a hexagonal pack and not quite making it. SAIT

I notice that your plate 5, paper 1 , shows "spots". Are these due to salt in the specimen, or to some other cause? Oster and Piley had a fiall ring in one of their speciments, and also got a sharp 3.25 A reflexion which looks fishy to me. The reason I ask is as follov. The equatorial spacings for Structure E arrear to show one main spot (neglecting doubling for the moment). If the structure is pseudo-hexagonal this is likely to be either mut of or in if it means a great lump at the origin of the C projection. This could only be phosphates near the centre. If ∞, it mears a lot of material between the helices (unless your sureestion or helices in the trigonal position is correct; even then I am not clear if it rould give the right answer). Part of this interhelical material could be the Ka+, but this seems hardly enourh. However, if some extra salt were there this mirht te sufficient. Woreover, it would explain a lot or the masaline density discrepencies which are difficult to accon: ... model. Of course, you add distilled water wea matiau the inbes, but is it quite certain that, in the specimens which give X-ray rhotos, you have only the same amount of Ma+ (or other ions) as for ? The dilema is a very real one because in effect one is deducing one "radius" from the eeneral reflexions and another from the equetoriens
mis suycests that there is something non-helical in the strunture. hi. As linely to be where adjecent helices interact. A structure \because i. is oylizerical contributes nothing to the general reflexions $\because \because$ aters the equatorials, ana the most likely thing to do this is ra :ons in the water.

