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PREFACE.

In treating of Refraction hy Simple and Com

pound Ophthalmic Lenses, I hope, more especially

through graphical and analytical means, to guide

the reader upon a path by ivhich he may gain

easy access to an understanding of the subject

without recourse to mathematical dioptrics.

To better attain my purpose, I shall develop

the principles involved in their primary or nat

ural order of succession, and under the restriction

of the supposition that the reader is a novice.

In the drawings, which are photo-engravings

hy the Moss Company from my own pen, I have

intentionally exaggerated the curvatures to better

contrast the characterising differences in the lenses

illustrated.

Should this limited treatise prove of interest,

I trust the same will he weighed and accepted as

an unpretentious effort to fill a vacancy strictly

in the spirit of its issuance.

CHAS. F. PRENTICE.

Xcw-York, Sept. 1, 1886.



COPYRIGHT IN ILLUSTRATIONS.

From advance proof of Harper 's Weekly.

Judge Wallace, of the United States Circuit Court, has just rendered

a decision upon an interesting and important point of the law of copy

right. The case was that of Harper against Shoppell. The defendant

had made an electrotype copy of an engraving that appeared in Har

per's Weekly, the Weekly being copyrighted, and had sold his plate,

which was afterward published in another periodical. Judge Wallace,

after a full presentation of the facts, decides that, under the circum

stances of the case, the defendant is liable in damages as a joint wrong

doer with the publisher of the periodical in which the reproduced

engraving appeared.

The point involved was whether the copyright of a "book," as such,

protects the engravings published in the same. This point has never

come directly before the courts in this country, and Judge Wallace's

decision establishes here the English rule, which, as stated by Judge

Jessell, is that
"
a book must include every part of the book; it must

include every print, design, or engraving which forms part of the book,

as well as the letter-press therein, which forms another part of it."

The drawings, tables, and manuscript herein contained are therefore

individually protected under this copyright.

Persons are cautioned against alteration of the drawings for purposes

of catalogue illustration.
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REFRACTION.

§ 1. The effect which transparent mediums produce on light pro

jected obliquely to a surface in its passage from one medium to

another of different density being termed Refraction, and as the

proposed treatment of its manifestation by lenses is to be purely

elementary, I may be pardoned for citing the primary law governing

it, in which I shall confine myself strictly to parallel rays, in air,

impinging upon and passing through transparent optical glass

exclusively. In the accompanying diagram, Fig. 1, the medium

glass is represented as being of very appreciable thickness, with

parallel surfaces, intercepted by an oblique ray of light, i, in an

isolated vertical section, a-b-c-d.

For convenience we shall term the ray prior to its contact with the

glass, the incident ray, i; the ray during transit within the glass, the

refracted ray, e1 e2;* and the refracted ray after exit, the final

ray, f .

*
The use of superior indices will not prove conflicting, as algebraic values

are

excluded.

7



8 REFRACTION.

§ 2. Refraction manifests itself by an acute bend in the direction

of an oblique ray of light, i, at the point of entrance, e1, in passing

from one conducting medium to another, a-b-c-d, of different

density. Hence, a ray passing from one into and through another

medium is bent both at the point of entrance e1 and of exit e2.

Fig. 1.

By virtue of the deflection or bend alluded to, the incident ray, i,
must include a different angle, a, with the perpendicular p1 from

that, P, of the refracted ray e1 e2, and it is by the trigonometrical
values s and s1 of these angles, which have been found to bear a

constant proportion to each other, that we are enabled to give

expression to the amount of deflection sustained by a ray in passing
from one medium to another.

§ 3. Experiment has shown that the proportion -j remains a con

stant value for any obliquity of a ray incident to the same medium,
and yet, that it becomes a different value by substituting one

medium for another.

It has therefore been considered expedient to establish the value of

-j
for all transparent mediums in the specific case of a ray passing

from air into them, such values being known as the refractive

indices of the substances.

To illustrate the graphical method by which we may arrive at the

direction of the refracted ray, e1 e2, the index of refraction and the

direction of the incident ray i being known, I shall select the index
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S 3
for crown glass = 1.5, by introducing the proportion

— = -- = 1.5
S Li

in the construction as follows :

After erecting the perpendicular p1, take from a scale of equal

parts the value for s = 3, and transfer it from e1 beneath the ray i,

upon the line e1 b.

In the same manner transfer the value for s1 = 2 from e1 upon the

line e1 a, and in both points b1 a1, so established erect perpendiculars.

The perpendicular at b1 will intersect the ray, i, at a point, v, which

limits the radius of a circle drawn from e1 as a center ; and by the

circle's intersection with the perpendicular at a1, the point, x, defining

the direction of the ray, e1 e2, is fixed.

§ 4. As a ray of light is propagated backwards or forwards on the

same path, the index of refraction from a denser medium into air is

the inverse proportion from that of air into the medium, hence
— is

the proportion by which the direction of the final ray, f, is to be

determined when the direction of the ray, e1 e-, is known.

We therefore erect at e2 the perpendicular p2 and transfer the value

of s1 = 2 beneath the ray e1 e2 from e2 upon the line e2 d ; likewise

the value for s = 3 from e2 upon the line e2 c, and erect as before in

the points d1 and c1 the perpendiculars.

The perpendicular at d1 will intersect the ray, e1 e2, at a point, y,

limiting the radius of a circle from the point e2; the point, z, at the

circle's intersection with the perpendicular in c1 establishing the

direction of the final ray, f .

As p1 and p2 are parallel, from the construction it follows that the

ray f is parallel to i, and therefore of the same direction.



PRISMS.

§ 5. Pursuant to the spirit of my intention to avoid mathematical

formulas, I shall seek to arrive at a conclusion respecting the deflec

tion incurred by a ray in passing through a medium with oblique

plane surfaces, confining myself as before to isolated vertical

sections.

Specifically I shall select two right-angled prisms of varying

angles, a2 and a3, with the rays i2 and i3 incident perpendicularly to

the vertical sides a2 b2 and a3 b3, so as to avoid refraction on the

incident sides, as shown in the vertical sections, Fig. 2 and Fig. 3,

respectively. At e2 and e3 the rays i2 and i3 suffer refraction in the

s1 2

proportion
— = —

, according to § 4, and which, if carried out in con-

s o

struction as before indicated, determines the directions of f2 and f3,

respectively, as shown.

In the future I shall have occasion to refer to the line dv, which is

the perpendicular from v upon a line coincident with the ray i3

when the latter is parallel to the base b3 c3 of the prism, Fig. 3.

Under such circumstances the displacement dv of the final ray f3 is

associated with a mathematical dependency upon the angle, a3, of
s

the prism, and the index of refraction —

j.

10



PRISMS. 11

From the construction it follows that the final ray f3 (Fig. 3)

intersects the horizontal line h° at n3, and f2 (Fig. 2) at a more distant

point, n2, not shown. By a comparison of the prismatic section Fig.
2 with Fig 3, we observe that by a decrease of the angle from a3 to

a2 the perpendicular p2 has a greater tendency to parallelism with

the horizontal line h° than p3. Such parallelism being realized—

when a2 c2 is parallel to a2 b2 or a2 = 0° — would result in the value

s1 vanishing in the incident ray i2, and s in the final ray f2, by virtue

of the decrease of the angles of incidence and refraction in the pro

portion 2 to 3, thus establishing the coincidence of the incident and

final rays, and placing the point n2 of intersection at infinity respect

ing the horizontal line h°.

§ 6. In general we may therefore be permitted to assume that the

greater the angle, a, of obliquity of the surfaces (Fig. 4) the greater

will be the deflection of the final ray f, and the more proximate to

the base b c of the prism will be its intersection n with the horizon

tal line h°. Through practical experiment prismatic refraction man

ifests itself by an apparent change from the true position of an

object, O, to that of its image O1 when viewed by the observer's eye

at n.

§ 7. In confining our observations to the relative directions of the

incident and final rays, we may attain to a conception of the refrac

tion for a medium included within plane surfaces by any of the

following methods of impression:
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1, a. The direction of a ray remains unchanged in passing through

opposite parallel surfaces of a transparent medium, or

b. The incident ray i and the final ray f are parallel when the

former is projected obliquely upon a transparent medium

included within parallel surfaces.

2, a. The direction of a ray is changed in passing through opposite

oblique surfaces, by a deflection of the final ray f toward the

region of their greatest distance apart, or

b. The incident ray i and the final ray f are oblique when the

former impinges upon a transparent medium included within

oblique surfaces, or

c. The apex of the angle formed by an obliquity of the incident

and final rays is always directed toward the apex of the angle

of obliquity of the surfaces.

The law 2 finds its graphical demonstration in the following

figures wherein I have introduced the medium glass as being inter

cepted by imaginary vertical and horizontal planes, V and H,

coordinate at the point of exit e2 for the final ray f.

Fig. 5. Fig. 6.

Prism, Base vertical ; Eefraction Prism, Base horizontal ; Refraction

horizontal. vertical.

§ 8. The figures 5 and 6 are of particular interest to us, as they
illustrate a very vital element in our future consideration of the

refraction by cylindrical lenses, namely, that the refraction is con

fined to the plane whose intersection with the medium corresponds

to the obliquity of the surfaces. Thus, for an obliquity of the

surfaces in the horizontal plane H (Fig. 5), we find the refraction
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active in the horizontal plane (i° to f°), and for an obliquity of the

surfaces in the vertical plane V (Fig. 6), the refraction is active in the

vertical plane (i1 to f1).

Here, in the sense that the final rays are confined to the plane of

incidence, we may term the refraction passive in respect to its right-

angled coordinate plane. Thus in Fig. 5 the refraction is passive
with regard to the vertical plane, and in Fig. 6 with regard to the

horizontal plane.

Fig. 7.

Prism, Base oblique ; Refraction diametrically opposed.

§ 9. It is evident that the refraction is active in one and passive

in the other plane for a medium of which the surfaces are oblique in

but one plane, and to obtain the refraction active in both fixed

planes an obliquity of the surfaces relative to each plane would be

necessary. In such a medium (Fig. 7), if we consider the refraction

merely with regard to the horizontal obliquity of the surfaces, the final

ray would take the direction f°-h, and, if independently for the

vertical obliquity, the final ray would assume the direction f2-v.

Therefore, with due consideration of the obliquity in both planes, the

refraction must include both properties of deflection and result in a

final ray, f, which is directed to a point, m, defined by projection of

the apportioned horizontal and vertical displacements, dh and dv.

The figure of reference being merely a prism having its base set

diagonally to the fixed right-angled coordinate system, the ray f is

therefore also directed to the region of the greatest distance apart

of the surfaces, through the point m, within a diagonally bisecting

and oblique plane P.



SIMPLE LENSES.

§ 10. Directing our attention to the effect produced by substituting

a segment of a circle for the line a2 c2 of the original prismatic

section (Fig. 2), each succeeding point e2, e3, e4 (Fig. 8)

may be considered as one of a prism varying in its angle a2, a3, a4

with that of its predecessor ; and if the construction be

carried out for each incident ray i2, i3, i4 the correspond

ing radial lines at the points, e2, e3, e4 in this case sub

stituting the perpendicular p2 heretofore mentioned, each final ray

f2, f3, f4 will be found to intercept an arbitrarily selected

base line, h°, at the respective points n2, n3, n4, to infinity.

Plano-convex section.

In the so-called plano-convex section Fig. 8, the converging final

rays f5, f6, f7, corresponding to the more central incident parallel

rays i5, i6, i7,* establish points n5, n6, n7 to infinity, and

possess the remarkable feature of intersecting each other at a common

point F, termed the focal point, which is situated upon the central

and direct ray i-f. According to § 4, rays emanating from the focal

*
All future deductions refer exclusively to such rays.

14



SIMPLE LENSES. 15

point, F, will be emitted as parallel rays i5, i6, i7 i. The

points n4, n3, n2, toward the refracting medium, correspond to the

more eccentric incident rays, and, in the sense that these fail to assist

in the harmony of a union of the final rays at the focal point,

are to be considered a disturbing element, giving issue to what is

termed
"
aberration." In the plano-concave section Fig. 9 the final

rays f5, f6, f7 are emitted as diverging rays, which may be

considered as emanating from the so-called virtual focal point F,

situated on that side of the section which corresponds to that of the

incident rays.

Fig. 9.

Plano-concave section.

§ 11. For either of the above sections it is also obvious that the

more acute the curvature of the circle the greater proportionately

will be the angles a2, a3, a4, limiting the obliquity of the surfaces,

and the more proximate to the medium will be the focal point F.

Further, as the curvature of the circle is dependent upon the dimen

sions of the radius, the latter must prescribe the distance, D, of the

focal point from the medium for which the index of refraction is

known. This relationship involves mathematical formulae for which

I refer the reader to leading German authors* on the subject.

The greater the deflection of the final rays f5, f6, f7, the shorter

will be the distance D, or for an increase of the refraction we have a

corresponding decrease of the focal distance.

*

H. von Helmholtz, "Handbuch der Physiologischen Optik," §9, 1886. Muller-

Pouillet's "Lehrbuch der Physik," II. Band, 1876-1881. Dr. Adolph Wullner,

"Lehrbuch der Experimental Physik," Leipzig, 1883.



16 SIMPLE LENSES.

§ 12. If we seek to express the unit of refraction by the numeral 1,

for a section of which the focal distance D is equal to one metre or

100 centimetres, sections of two, three, four times the refraction

would find the expression of their focal distances in \, \, }, the focal

distance of the unit, or 50, 33^, 25 centimetres, respectively.

The unit above mentioned has been termed one Dioptric,* and is

adopted as the standard in measurements of ophthalmic refraction.

Values beneath the unit are placed at 0.25D.,t 0.50D., and 0.75D.. their

respective focal distances being four metres or 400 centimetres, two

metres or 200 centimetres, and one and one-third metres or 133^

centimetres.

§ 13. Assuming the medium to divide the aerial space into negative

and positive regions (Figs. 8, 9) as indicated by the sign — (minus)

on the incident side of the medium, and the sign + (plus) behind the

medium, we shall find the focal point on the positive side for all

convex, and on the negative side for all concave sections.

In this sense the refraction for convex sections is considered posi

tive, and for concave negative; so that for a numeral of 1 D., the

refraction for Fig. 8 is expressed as being + 1 D., and for Fig. 9 — 1 D.

Fig. 10. Fig. 11.

§ 14. By substituting, in Fig. 8, for the plane side a curvature c1

concentric with c2, the refractive effects of the sections, Fig. 8 and

Fig. 9, are virtually united, as shown in Fig. 10. Owing to the con

cave curvature c1, the incident ray i will assume the direction e^e2,

being coincident with the focal point F, which may also be practi-

*
The full table of Dioptric numerals is given on page 41.

t D here being the abbreviation for Dioptric.
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cally accepted as the focal point for the convex curvature c2, provided
the thickness, t, of the medium is created infinitely small in propor

tion to the radii r1 and r2.

Rays emanating from the focal point F for a convex curvature c2

being emitted as parallel rays, § 10, it conditionally follows that the

ray f will be parallel to the ray i. The neutralization is the more

complete when the curvatures c1 and c2 are identical, and are brought
in contact as shown in Fig. 11.

§15. Hence, in a pair of united convex and concave sections of

identical curvature, it follows that the effect of the one is neutralized

by the other respecting the existence of a focal point on either side of

the medium.

§ 16. Prescribing the opposite curvatures to be unequal, the final

rays will be accumulated at a focal point on that side of the medium

which corresponds to the focal point for the more acute curvature.

Fig. 12. Fig. 13.

Periscopic convex section. Periscopic concave section.

By reference to the periscopic convex and concave sections, Fig. 12

and Fig. 13, respectively, if we consider the refraction merely with

respect to the front curvature c1, disregarding the existence of a ter

minating back surface, the incident ray i will assume the direction of

the ray e1 f1 toward the focal point F1 then within the medium.

Considering a plane back surface e2-p to exist, at the point e2 the

ray e1 e2 would suffer a second refraction and result in the ray e2-f2,

directed to the focal point at F2.
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To eliminate this second or augmented refraction, it would be nec

essary for the ray e1 e2 to impinge upon the back surface c2 perpendic
ularly at e2.

A surface effecting this is obtained by giving it a curvature c2

prescribed from the point F1 as a center, in which specific event the

ray e1 e2 traverses the radius of the circle or the perpendicular at e2
for the surface c2, thus fixing the point F* as the focal point for the
respective periscopic convex and concave sections.

§ 17. Observation of the figures shows that the lesser curvature

proportionately reduces the refraction of the more acute, the focal

point Fi for the periscopic sections being at a greater distance from
the medium than the focal point F2 for the plano-convex or concave.

The more acute the curvature c2, within the limits of parallelism with
the curvature e\ the more distant wiU be the focal point F* from the

medium, so that the total refraction for the respective sections is

equivalent to the difference of the apportioned numerals, and bears
the sign corresponding to the more acute curvature c1.

Supposing, in a periscopic convex section, 2.5D. to be the prescribed
numeral of refraction for the convex, and 0.50D. for the concave side,
the total refraction will be 2.5—0.50= 2D. convex, or +2D.

Similarly in a periscopic concave section, 2.5D. concave combined
with 0.50D. convex equals 2.5— 0.50= 2D. concave, or —2D.

Fig. 14.

Double or Bi-convex section.

Fig. 15.

Double or Bi-concave section.

§ 18. In the bi-convex and bi-concave sections Fig. 14 and Fig 15
it can be similarly shown that the curvature c2 increases the refraction
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of c1, so that the total refraction is expressed by the sum of the appor

tioned numerals and bears the sign associated with the nature of the

respective sections.

Thus in either figures the numeral for c1 being ID., and for c2 being

1.5D., the total refraction wiU be 1+ 1.5= 2.5D.

Convex, or +2.5D. for Fig. 14, and concave, or
—2.5D. for Fig. 15.

Fig. 16.

§ 19. For a medium (Fig. 16) composed of parallel vertical sections,

each adjacent imaginary section has its corresponding focal point at

the same distance (D) from the medium, so that the refraction for all

central incident parallel rays becomes manifest by establishing a suc

cession of these points, resulting in the so-called focal line 1 F 1.

A similar succession of the radial centers (c) establishes a line

(AcA), termed the axis of the so-created cylindrical medium or lense

which is parallel to the focal line 1 F 1 and in the same plane.

Fig. 17. Fig. 18.

Axis vertical ; Refraction horizontal. Axis horizontal ; Refraction vertical.

Plano-convex Cylindrical Lenses.
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§ 20. As in simple cylindrical lenses the surfaces have their defining

obliquity in the plane which is perpendicular to the axis, we here also

find the refraction active in this plane, and passive in the axial or

right-angled coordinate plane (see figures 17-20), wherein, as before,

i° and f° are associated with refraction in the horizontal, and i1 and f1

with refraction in the vertical plane.

In a practical experiment convex cylindrical refraction manifests

itself by an apparent increase, and concave cylindrical refraction by

an apparent decrease of the dimensions of an observed object in the

plane which is at right angles to the axis. In the axial or diametri

cally opposed coordinate plane, the refraction being passive, corre

sponding dimensions remain unchanged.

Fig. 19. Fig. 20.

Axis vertical ; Refraction horizontal. Axis horizontal ; Refraction vertical.

Plano-concave Cylindrical Lenses.

§21. To obtain the cylindrical refraction equally active in both

planes, thereby reducing the focal line to a focal point, it would be

necessary to combine identical cylinders, or, what is the same, create

a single lens of which the opposite surfaces are right-angled coordi

nate cylindrical elements as shown in Fig. 21.

Under such circumstances, however, the focal line l1 F1 11 for the

front surface c1 is closer to the face of the lens than the focal

line l2 F2 12 for the back surface c2, which, in addition to the fact of it

being difficult to insure the chief planes of refraction being at right-

angles to each other in the construction of a bi-cylindrical lens, makes
it obvious that these conditions, collectively, must increase the ten

dency to greater aberration.
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Fig. 21.

Double or Bi-cylindrical Lens.

§ 22. The greater the distance apart of the surfaces, c1 and c2, the

greater will be the aberrative distance, F1 to F2. Yet, as the thickness

of the lens may generally be accepted as a vanishing quantity in pro

portion to the focal distance, we may consider a common focal point

to exist for both refracting surfaces.

Fig. 22.

Plano-convex Spherical Lens.

§ 23. Practically, however, it would be better to create a surface

which shall include within itself the activity of refraction for the ver

tical as well as horizontal planes. With this object in view, I shall

select the isolated vertical section described in § 10, and cause it to be

rotated upon the central incident and direct ray, i-f, as its so called

optical axis, whereby a plano-convex spherical lens is obtained. (See

Fig. 22.) Similar rotation of the sections Figs. 9, 12, 13, 14, and

15, inclusive, would result in the so-created spherical lenses being

characterized and distinguished by the sections employed.
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lb is evident that the incident and final rays will retain their rela

tive obliquity during the rotation, so that all incident parallel rays find

their corresponding final rays in the resulting cone having its apex at

F or the focal point.

To further illustrate, we may take advantage of §9 in its application

in this instance to a medium of which one surface is curved and oblique

in both right-angled coordinate planes.

Fig. 23.

In the plano-convex spherical lens Fig. 23, if we consider the refrac

tion at e2 of the ray i merely with regard to the horizontal obliquity,
the final ray would take the direction f°-h, and, if independently for

the vertical obliquity, the final ray would assume the direction f^v.

Therefore, with due consideration of the obliquity in both planes or

meridians, the refracted ray must include both properties of deflec

tion, and result in a final ray f, which is directed to the focal point F

through a point m, of the oblique plane P, defined by projection of

the apportioned horizontal and vertical displacements dh and dv.

§ 24. Finally, we may therefore conclude that spherical refraction is

equivalent to the refraction of right-angled crossed cylinders of iden

tical curvature.

As in spherical lenses the refraction is active in two diametrically

opposed coordinate planes or meridians, the observance of an object
through such will create the impression of enlargement for a convex
and of reduction for a concave lens for both the lateral and longitu
dinal dimensions of the object.



COMPOUND LENSES.

I. CONVEX MERIDIANS.

§25. An asymmetrically-refracting or compound lens is one in

which the principal diametrically-opposed sections include different

degrees of refraction, in contradistinction to those hitherto mentioned,
and in which uniform refraction took place either in one and not the

other or equally in both meridians.

Fig. 24.

Convex Cylindro-cylindrical Lens (+ c1 axis 180° C + c2 axis 90°).

By reference to § 21, Fig. 21, it is evident that the aberrative dis

tance F1 to F2 may also be definitely increased by prescribing different

degrees of refraction for the active planes or sections of the opposite

cylinders, in which event the focal point ascribed to the equally curved

crossed cylindrical lens must be destroyed, and substituted by a pair

of focal lines, which are separated by a distance equivalent to the

difference of the respective focal distances of the diametrically-

opposed unequal cylinders. Thus in the asymmetrically -refracting

lens Fig. 24, represented as consisting of two crossed convex cylin

ders (c1 and c2) of unequal curvature, l1 F1 11 and l2 F2 12 will be the

region of the respective focal lines, and their distance apart (F1 to F2)

the aberrative distance, termed by Sturm the "focal interval."

23
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Fig. 24.

Convex Cylindro-cylindrical Lens (+ c1 axis 180° O + c2 axis 90°).

As the cylinders are of equal length, the focal lines l1 F1 l1 and

l2 F2 12 would also be identical in this regard when the apportioned

refractions of the cylinders are considered independently of each other.

§ 26. The combined refraction of the cylinders, however, definitely

modifies this specific condition, and in the following manner :

The outermost incident rays i°, in the central horizontal plane,

which would have been directed to the points l1 and l1 for the cylinder

c1, will suffer horizontal displacement toward the point F2, owing to the

activity of the refraction in this plane for the cylinder c2, and so

establish points d1 and d1 of the focal line l1 F1 11 for the combined

action of the cylinders c1 and c2 in the horizontal plane.

Similarly, the outermost incident rays i1, in the central vertical

plane, which would have been directed to the points l2 and l2 for the

cylinder c2, will suffer vertical refraction in this plane for the cylin

der c1 to F1, crossing each other at this point and thereby intercepting
the focal line l2 F2 12 at the points d2 and d2 for the combined action of

the cylinders c1 and c2 in the vertical plane.

If we consider the refraction at the point e2 of the circle C for the

ray i merely with regard to the horizontal obliquity of the surfaces

or the cylinder c2, the final ray would take the direction e2-h, inter

cepting the focal line of the cylinder c2 at a correlative point n2; and

as all final rays for the cylinder c1 above the central horizontal plane

intercept the focal line d1 F1 d1, it follows that by introduction of

the cylinder c1 the ray e2 h must fall subject to the same influence
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for the combined action of the cylinders, thus depressing the ray

e2 h from the point h perpendicularly to m1, and consequently also

the point n2 to m2 within the focal line d2 F2 d2.

By an analogous reasoning to § 9 we here also find the direction

of the final ray f to be determined by projection of the apportioned

horizontal and vertical displacements, dh and dv, which are solely

dependent upon the refraction ascribed to the diametrically opposed

active meridians of the cylinders c1 and c2.

Increased proximity of the point e2 to e0,* upon the circle C, will

be associated with a further recession of m1 from F1, and with an

approach of m2 toward F- for these points of intersection of the final

ray f with the respective focal lines at F1 and F2 within the correla

tive regions F1 d1 and d2 F2, the reverse being the case for an advance

ment of e2 to e1. (See illustration on title-page.)

§ 27. The total refraction for all incident parallel rays included

within the area of the circle C will therefore also result in a limitation

of the final rays to the region and magnitude of the focal lines

d1 F1 d1 and d2 F2 d2.

Such final rays, if intercepted at intervals by a transverse perpen

dicular screen, in a practical experiment, would project themselves

as elliptical areas of diffused light of proportionately varying size.

The longest and shortest diameters of the consecutive ellipses

correspond to the meridians of least and greatest refraction, so that

in the immediate vicinity of F1, for instance, the ellipses have their

longest diameters horizontally ; whereas, in the vicinity of F2, their

longest diameters are vertical.

This naturally occasions a reversal of the ellipses respecting their

diameters, at some point within the focal interval Fi-F2, such point

being determined where the vertical and horizontal displacements

are alike, and the section consequently a circle, T.

The position of this circle relative to the limits of the "focal

interval" might be termed the region of transition.

*
In the illustrations for compound lenses, e° and e' have been selected to desig

nate points of the horizontal and vertical planes respectively, the indices thereby

harmonizing with i°, f°, and i1, f, of correlative refraction.



26 COMPOUND LENSES,

Fig. 25.

Convex Sphero-cylindrical Lens (+ s2 C + c1 axis 180°)
—Double Form.

§ 28. Asymmetrical refraction in a lens is, however, preferably

attained by combining a spherical with a cylindrical surface, the

requisite conditions being fulfilled through the difference arising

from the augmented or decreased refraction of the spherical surface

by and in the active meridian of the cylinder.

To increase the refraction of a positive or negative spherical lens

in one meridian, we may add to it the active meridian of a cylinder

bearing the same sign ; and to decrease it in the same meridian, we

may combine it with the active meridian of a cylinder bearing the

opposite sign.

(1) The combination of a positive spherical with a positive cylin
drical surface would result in the section of greatest refraction

being double convex ; and,

(2) The combination of a positive spherical with a limited or less

acute negative cylinder would result in the section of least refrac

tion being periscopic convex.

Where the aforesaid combinations are spoken of, I shall take the

liberty of ascribing to them the terms double and periscopic form,

respectively.

§ 29. As the combination of crossed convex cylinders of unequal
curvatures gave issue to a pair of focal lines, to the novice it may

appear requisite that a focal point and a focal line should exist for

a combination of a spherical with a cylindrical surface. In conse

quence, I shall endeavor to avert this possible though erroneous

impression.
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Fig. 26.

Convex Sphero-cylindrical Lens (+ s2 O — c1 axis 90°)
—

Periscopic Form.

In the convex sphero-cylindrical lens of double form Fig. 25, if

we considered the refraction for each surface independently of the

other, we should find a focal point at F2 for the convex spherical

surface, s2, and a focal line, say, at 1 F 1, for the cylindrical surface

c1. Their combination giving issue to augmented refraction in the

vertical plane, however, occasions a displacement of the focal line

1 F 1, to the region l1 F1 11.

The final rays from the outermost points, e°, in the horizontal plane

being directed to the focal point F-, it is evident that the focal line

l1 F1 11 must become subject to the limiting influence of the spher

ical refraction in this plane, thereby establishing the points d1 and d1,

and restricting the magnitude of the focal line to dl F1 d1.

The final rays from the outermost points, e1, in the vertical plane,

which would have been directed to the focal point F2, cross each

other at F1, the extremities being thereby displaced from F2 to d2

and d2, thus resulting in the destruction of the focal point F2, and

prescribing a limitation of the rays to a created focal line d2 F2 d2.

§ 30. The convex sphero-cylindrical lens of periscopic form Fig. 26

is constructed by combining a limited concave cylinder, c1, with a

convex spherical surface, s2, the axis of the cylinder here being placed

in the vertical instead of the horizontal plane for future purposes of

reference.

In this case I have ascribed to the spherical surface s2 a curvature

corresponding to the focal point F1, and to the cylindrical surface c1,

a curvature, which, acting in combination with its associated hori-
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zontal meridian of the spherical surface, causes the rays to accumulate

at the focal line d2 F2 d2. The reasons ascribed for the destruction

of the focal point F2, in the lens Fig. 25, are alike applicable to the

creation of a focal line d1 F1 d1 at F1, in the present instance, as

also to the restriction of the focal line to the magnitude d2 F2 d2, for
the cylinder c1.

§ 31. The characteristic difference between the double and the

periscopic form of asymmetrically-refracting lens exists merely in the
fact that the focal lines and their respective elements of creation are

interchanged. Thus in Fig. 25 the focal line d2 F2 d2 corresponds
to the initial effect of the spherical surface ; whereas, in Pig. 26 the

first focal line d1 F1 d1 corresponds to the same.

§ 32. This difference, however, is not material, as it is evident that
the magnitude and the distance of the focal lines from the lens are

dependent upon the refraction ascribed to its two principal sections ;

and, since any two given points (d1 and F2, F1 and d2, m1 and m2)
definitely fix the position of a line or ray in space, it is further

obvious that the direction of all final rays will be identical for any
lens* in which the right-angled coordinate meridians of greatest and
least refraction are allotted the same.

§ 33. To demonstrate the analysis of formula? for these equivalents
I shaU designate, for the respective figures, the refraction as being
expressed by

la. + 3.5 cyl. axis 180° 0 + 1.5 cyl. axis 90°. (Fig. 24.)
Ha. + 1.5 spherical o + 2 cyl. axis 180°. (Fig. 25.)

Ilia. + 3.5 spherical o
- 2 cyl. axis 90°. (Fig. 26.)

It being necessary to become impressed with the meridians of

greatest and least refraction, I have considered it expedient to picture
these in their allotted planes of activity, V and H, as shown in their

*

Wherein the rays are incident in the immediate vicinity of the optical axis

££££Zl?
lens is °"g™ in~ *£™-
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correlative sectional diagrams, Fig. 24a, Fig. 25a, Fig. 26a, and refer

to them in the following, as occasion demands :

Fig. 24a. Fig. 25a. Fig. 26a.

Formula la. + 3.5 cyl. axis 180° o + 1.5 cyl. axis 90°.

Refraction : \
. ,

„_

„. _,,
> + 3.5 vertical o + 1.5 horizontal = + 3.5\ o + 15H.

Pig. 24a. J

Formula Ha. + 1.5 spherical o + 2 cyl. axis 180°.

Refraction : ) ^ „ ., ^ „ ,
.

, , o rTT -, m

^. ~
> +2 + l.o verticalo + l-5 horizontal =+ 3.oV o + 1.5H.

Fig. 25a. )

Formula Ilia. + 3.5 spherical o — 2 cyl. axis 90°.

Refraction : \
n .

.

n „ , ,
,

0 ^TT , ^ r-u

\ + 3.5 verticalo— 2 + 3.5 horizontal=+ 3.oVo +1.5H.
Fig. 26a. S

Pursuant to § 32 we find the lenses la, Ha, and Ilia to be asym

metrically-refracting equivalents.

§ 34. As the preference is generally given to the double form

(Formula Ha), and, under certain circumstances, occasionally to the

periscopic (Formula Ilia), I here only give the rules applicable for

the conversion of the one into the other formula.

To convert the double into the periscopic form :

Rule 1. Place the sum of both numerals as the numeral for newly

created spherical,* and combine with the same cylindrical numeral

having its sign and axis reversed.

*
The sign of the original spherical remaining unchanged.
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To convert the periscopic into the double form :

Rule 2. Place the difference of both numerals as the numeral for

newly created spherical,* and combine with the same cylindrical

numeral having its sign and axis reversed.

§ 35. These lenses being designated for the correction
of anomalies

of ophthalmic refraction, in prescribing such it becomes necessary to

indicate their position before the eye by allotting to the axis of the

cylinder the noted degrees of rotation as indicated by the protractor

or divisions of an oculist's trial frame. This, however, does not

change the inherent properties of the lens, as the meridians of

greatest and least refraction are ever and anon 90° apart between

the limits of rotation, 0° and 180°.

Thus, in the instance of the formula :

+ 1.5 sph. o + 0.50 cyl. axis 130°

the periscopic form would be expressed according to Rule 1, § 34, by

+ 2 sph. o — 0.50 cyl. axis 40°.

Inversely, the former may be made the result of the latter by

application of Rule 2, § 34.

A table giving the available combinations by crossed convex

cylinders, from 0.25D. to 4D., is shown on page 43, and wherein,

according to § 24, crossed convex cylinders of identical curvature

are substituted by their spherical equivalents.

The diagonal column of spherical lenses divides the table into two

sets of compound lenses which are duplicates in refraction, the one

being a reversion of the other by a change in the axis of 90°.

Thus all lenses in the vertical columns beneath the spherical are

correlative duplicates of the lenses in the horizontal columns to

the right of the same spherical. (A1 = a1), (A2= a2), (A3 = a3),

(Bi = b1), (B2 = b2), (B:! = b3), etc.

*
The sign of the original spherical remaining unchanged.
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2. CONCAVE MERIDIANS.

§ 36. The preceding general principles are alike applicable to the

similarly* planned concave compound lenses Figs. 27, 28, 29, in

each of which the focal lines, and consequently also the focal interval

and region of transition are virtual, and in the negative region

before the lens.

All parallel rays incident upon and within the periphery of the

circle C in either of the figures will therefore result in final rays

behind the lens which appear to emanate from correlatively estab

lished virtual points d1 and F2, F1 and d2, m1 and m2, of and within

the limits of the focal lines before the lens. For these lenses,

respectively, I have ascribed the refraction as being expressed by

lb. - 1.5 cyl. axis 180° o
- 3.5 cyl. axis 90°. (Fig. 27.)

lib. - 1.5 spherical o - 2 cyl. axis 90°. (Fig. 28.)

Illb. - 3.5 spherical o + 2 cyl. axis 180°. (Fig. 29.)

and which, by a similar method of analysis to § 33 pursuant to § 32,

will be found to be asymmetrically-refracting equivalents.

According to Rule 1, § 34, as an instance, the concave sphero

cylindrical lens
— 1.25 sph. o

— 0.75 cyl. axis 160°

may be converted into the periscopic form

- 2 sph. o + 0.75 cyl. axis 70°,

and vice versa, according to Rule 2, § 34.

* The meridian of greatest refraction is here placed in the horizontal instead of

the vertical plane.
31
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Fl---:

e1 \

4*-^^^
;:-7—-]-—

jO/
■ J°

p><C^
~f0

Fig. 27.

Concave Cylindro-cylindrical Lens (
— c1 axis 180° C — c2 axis 90°).

d1

d*'

Fig. 28.

Concave Sphero-cylindrical Lens (— s1 O — c2 axis 90°)—Double Form.

Fig. 29.

Concave Sphero-cylindrical Lens (— s1 O + c2 axis 180°)—Periscopic Form.

In the above figures, i°, e°, and f
°
are associated with horizontal, and

i1, e1, and f
l with vertical refraction.
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3. CONCAVO-CONVEX OR MLXED MERIDIANS.

§ 37. Hitherto we have prescribed different degrees of refraction,

restricted to the same quality, convex or concave, for the chief right-

dl~--^

f«

d1..---
—

"

Fig. 30.

Concavo-convex Cylindro-cylindrical Lens (— c1 axis 90° O + c2 axis 180°).

angled sections. In contradistinction hereto, and as a final* compli

cation, we may combine in a lens different or even like degrees of

refraction though of reverse quality ; namely, convex in one and

concave in the other diametrically-opposed coordinate meridian. As

an instance, I shall select the compound lens Fig. 30, represented as

consisting of a plano-concave, c1, and a plano-convex cylinder, c2, so

combined as to place their active meridians at right angles to each

other.
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Fig. 30.

Concavo-convex Cylindro-cylindrical Lens (— c1 axis 90° O + c2 axis 180°).

Independently considered, each cylinder c1 and c2 would have its

focal line l1 F1 11, and l2 F2 l2, of original magnitude in the region

of its sign
— and -f respectively, and consequently on opposite sides

of the lens.

When associated, however, the final rays, which would have been

restricted to the limits of the focal line l2 F2 12 for the cylinder c2,

will, by virtue of the dispersive effect of the cylinder c1 in the hori

zontal plane, be confined to an augmented focal line d2 F2 d2, within

the limits d2-d2, for the outermost rays emanating from the point F1

of the virtual focal line, l1 F1 11.

By a similar method of reasoning to § 26, all final rays within the

limits of the circle C will be accorded associated vertical and hori

zontal refraction, culminating in their united intersection of a line

d2 F2 d2, of the horizontal plane in the positive region behind the

lens. Interception of these rays by successive transverse vertical

planes will manifest itself in a demonstration of similarly arranged

ellipses respecting their greatest and least diameters, before and

behind the focal line d2 F2 d2. By projecting the final rays into the

region of their apparent emanation from before the lens, we would

attain to a similar increase of the virtual focal line l1 F1 11, to the

magnitude d1 F1 d1, and to a reversal of the so-defined ellipses

respecting their greatest and least diameters, as shown by the dotted

lines in the negative region (Fig. 30).

!f;__
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§ 38. Identical refraction is also preferably obtained in this instance

by combinations of spherical and cylindrical surfaces.

~v.

Fl

Fig. 31.

Concavo-convex Sphero-cylindrical Lens (+ s2 O — c1 axis 90°).

The combination of a convex spherical with a more acute concave

cylindrical surface results in the periscopic section being concave,

and the combination of a concave sphericalwith a more acute convex

cylindrical surface results in the periscopic section being convex.

The identity of the refraction for these combinations becomes

apparent by reference to the concavo-convex sphero-cylindrical lenses

Figs. 31 and 32, in which by a judicious selection of the respective

spherical and cylindrical curvatures according to § 32, the demanded

positive and negative elements of refraction for the principal meridi

ans of the crossed cylindrical lens Fig. 30, are fulfilled.

Fig. 32.

Concavo-convex Sphero-cylindrical Lens (— s1 C + c2 axis 180°).
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To illustrate the equality of formulae characterizing these equiva

lents, I refer to their correlative sectional diagrams Figs. 30c, 31c,

32c, in the order following :

Fig. 30c. Fig. 31c. Fig. 32c.

Formula Ic. - 1.5 cyl. axis 90° o + 3.5 cyl. axis 180°. (Fig. 30.)

'

\ — 1.5 horizontal o + 3.5 vertical = — 1.5H o + 3.5V.

Fig. 30c. S

Formula lie. + 3.5 spherical o
— 5 cyl. axis 90°. (Fig. 31.)

Refraction :)„„_,. ., „ ^ ,
. , -, rTT 0 r^r

> - 5 + 3.5 horizontalo + 3.5 vertical= — 1.5Ho + 3.5V.

Fig. 31c. S
^

Formula IIIc. — 1.5 spherical o + 5 cyl. axis 180°. (Pig. 32.)

I — 1.5 horizontalo— 1.5 + 5 vertical =— 1.5Ho + 3.5V.

Fiff. 32c. S

§ 39. These lenses being equivalents (see § 32), I here give the rule

in exclusive demand, by reasons later given (§ 40), for converting

the cylindro-cylindrical lens (Formula Ic), into the concavo-convex

sphero-cylindrical lenses (Formulae He. and IIIc).

Rule 3. Place the new numeral of cylindrical refraction equal to

the sum of both numerals accompanied by both the sign and axis

associated with either cylinder, and combine with the neglected

cylindrical numeral bearing its correlative sign as spherical.
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Comparison of the periscopic lenses Figs. 26 and 29 with the

lenses Figs. 31 and 32, respectively, exhibits a striking similarity
in construction, the characterizing difference being that the cylin

drical curvatures exceed the spherical in the latter as against a

reverse condition for the former.

§ 40. In a case of mixed astigmatism, demanding the foregoing

correction, it becomes necessary to determiue the chief meridians

— 1.5 and + 3.5 independently of each other, thereby obtaining the

combination expressed by Formula Ic, as by an endeavor to correct

through introducing a spherical element in any proportion or

wholly of either equivalent (Formula He or IIIc), an improvement in

one meridian would always be attended by a proportionate derange

ment in the other, with a probability of the patient failing to appre

ciate the merits of its application.

It is only in consequence of this fact that the lenses of the For

mulae He and IIIc are rarely the direct issue of a diagnosis, whereas,

in cases of regular compound astigmatism with congeneric meridians,

the lenses Ila, Ilia and lib, Illb are most apt to be.

§ 41. Astigmatism has in the main been attributed to asymmetry of

the cornea, though the crystalline lens is often found to be implicated ;

yet specifically in a case of mixed astigmatism in which the crystalline

lens does not assist, it is improbable that the corneal surface can ever

be of the form requisite to include reversed curvatures; so that

in such an instance the Ametropia is rather more apt to be one in

which an opposite quality of astigmatism is in excess of an existing

Hypermetropia or Myopia, respectively. Accepting this to be the

case, such an eye would fall heir to the features accredited to Hyper

metropia or Myopia respecting the
" nodal points" and

"

amplitude of

accommodation"; wherefore, in prescribing either of the aforesaid

sphero-cylindrical equivalents, a preference might be given to that

form which would be commensurate with the inherent physical and

physiological developments above alluded to.
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§ 42. The properties of asymmetrical refraction are also fulfilled in

a lens by creating for it, opposite a plane side, a single surface

including both curvatures allotted to the unequally refracting chief

meridians.

Fig. 33. Fig. 34.

The character of such a surface is shown in Fig. 33, wherein I have

selected a curvature c1 prescribed by the requisite radius r1 to effect a

refraction of 3 Dioptrics, and by having caused it to be rotated upon

a vertical axis R, a second curvature c2 at right angles to c1 is created

having a radius r2, so chosen as to correspond to a refraction of 2

Dioptrics.

In Fig. 34 two lenses are shown as being included within the sur

face so prescribed and an opposite plane side, the one being plano
convex L1,— the other plano-concave L2.

From the nature of the construction, it follows that these lenses are

each possessed of 3D. refraction in the vertical and 2D. refraction in

the horizontal meridian, so that the formulae for the same might be

expressed, respectively, by
38
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(Ai) [ + 3D. Ref . 90° o + 2D. Ref . 180° ] As (L1)

(Bi) [-3D. Ref. 90° o - 2D. Ref. 180°] As (L2)

as a distinction to the correlative formulae A2 and B2 for a pair of

crossed cylinders of identical refraction

(A2) + 3 cyl. axis 180° o + 2 cyl. axis 90°

(B2) - 3 cyl. axis 180° o - 2 cyl. axis 90°

and their sphero-cylindrical equivalents, respectively—

{ + 2 sph. O + 1 cyl. axis 180° ( Double Form )

f + 3 sph. o — 1 cyl. axis 90° ( Periscopic Form )

.„
. { — 2 sph. o — 1 cyl. axis 180° ( Double Form )

("3) 1

( — 3 sph. o + l cyl. axis 90° ( Periscopic Form )

§43. The rotary body shown in Fig. 33 may also be considered to

have been created by bending a simple cylindrical lens c1 to the

radius r2.

In such an attempt, the lens of the Formula Ai might be obtained

by bending a 3D. cylindrical lens to a radius corresponding to a

refraction of 2 Dioptrics, or a 2D. cylindrical lens to a radius corre

sponding to a refraction of 3 Dioptrics, in which event the latter would

merely require to be turned 90° to correspond with the balance of for

mulae. The inner or back surface would naturally also require to be

restored to a plane as indicated by the parallelogram in dotted lines.

The suggested method being impracticable, the process of grinding

must be resorted to, and, as this involves a far greater variety of tools

than is commensurate with the practical advantages of the lenses so

created, little has as yet been done in this direction except to demon

strate the feasibility of the operation.

§ 44. To exhibit the nature of the surface requisite to include the

functions of mixed meridians, a curvature, c2, of the horizontal

refraction + 2D., is shown in Fig. 35 as being the result of a rotation

of the concave curvature c1 with the vertical refraction — 3D.
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Fig. 35.

For the lenses shown in Fig. 36 as being provided with the above

surface, it is obvious that each is possessed of a convex and a concave

chief meridian or reversed curvatures, and the formulae for the

same is

(Ci) [- 3D. Ref. 90° o + 2D. Ref. 180°] As (L1)

(Di) [+ 3D. Ref. 90° o - 2D. Ref. 180°] As (L2)

as a distinction to the Formulae C2 and D2 for crossed cylinders of

identical refraction

(C2)
— 3 cyl. axis 180° o + 2 cyl. axis 90°.

(D2) + 3 cyl. axis 180° o — 2 cyl. axis 90°.

and their sphero-cylindrical equivalents, respectively
—

(Cb) { _

(Da) {

+ 2 sph. o — 5 cyl. axis 180°.

3 sph. o + 5 cyl. axis 90°.

- 2 sph. o + 5 cyl. axis 180°.

+ 3 sph. o
- 5 cyl. axis 90°.

In concluding this treatise, I recommend the student to practice the

transformation of optionally selected formulae, by the application of

the rules given, and in which he may further resort to the appended

tables in verification of his work.



NUMERALS OF

Metric System.

REFRACTION.

Focal Distances. Inch System. Focal Distances.

Centimetres, Dioptrics. Approximates. U. S Standard Inches.

400. 0.25 1 160 157i

200. 0 50 1 80 78|
133.3 075 1 53 52i

100. 1. 1 40 39f

80. 125 1 32 31i

66.7 150 1 26 26i

57.1 1.75 1 22 22k
50. o. 1 20 19H

44.4 225 1 18 17-}

40. 2. 50 1 16 i53(

36.4 2. 75 1 14 14A

33.3 3. 1 13 13i

30.8 325 1 12 121

28.6 3 50 1 11 11*

25. 4. 1 10 9*

22.2 4 50 1 9 8f

20. 5 1 8 71

18.2 5. 50 1' 7 71

16.7 6. 1 6i2 6,%

15.4 6. 50 1 6 6

14.3 7. 1 5i2 5f

12.5 8. 1 :5 411

11.1 9. 1 4i3 4f

10. 10. 1 4
Q 15
«J"1 6

9.1 11. 1 3i2
Q_9 .

•J16
'

8.3 12. 1: 3*4 3&

7.7 13. 1 3 Ul
7.1 14. 1 234 2{1
6.7 15 2$

6.3 16. l:2i2 2-h

5.5 18. l:2i4 2ft

5. 20. 1:2 m

2.5 40. 1:1 n

The above table has been arranged for comparison of the metric with the old

system of numbering, in which 1 inch was adopted as the unit. A lens of 10, 20, or

40 inches focus is therefore represented as being -jV, ^0, 01" 40" of the refraction of

the old standard.

The focal distances have been calculated upon the basis: 1 metre= 100 cen

timetres=39. 3 7 U. S. standard inches, through dividing each of these equivalents

by the Dioptric numerals. To render a harmony of the numerals of the two systems

possible, it is found necessary to neglect slight fractional variations, as shown in

the differences between the divisors in the 3d with the figures of the 4th column.

1 Dioptric being placed as equivalent to -^, lenses of 2, 3, or 4 Dioptrics may be

calculated as -4!o= 2lo, A=tV, or -fa=fa respectively, without materially conflicting
with the practical demands upon accuracy in a substitution of one system of

numerals for the other.
41
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Our superior facilities and devotion to precision

enable us to execute Oculists' prescriptions in an

exceptionally perfect manner, and, as the satisfac

tory execution of tliese by opticians in general

will depend upon the latter being theoretically

as well as practically qualified, we trust the pre

ceding pages may give sufficient evidence in our

favor to gain the good-will and confidence of

oculists in this regard.

We are also prepared to furnish Trial Sets and

Frames, Ophthalmoscopes, Clinical Thermometers,
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and Meteorological Instruments, as enumerated in
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will be mailed free upon application.
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JAMES PRENTICE & SON, Opticians,

(NEAR MAIDEN LANE.) 178 BROADWAY, NEW-YORK.



I. TABLE OF CROSSED CYLINDERS AND THEIR SPHERO-CYLINDRICAL EQUIVALENTS.

CONVEX MERIDIANS.

DIOPTRICS. + 0.2 5 C.I 80°

+0.25 C.90"

+0.50 C.90°

+0.7 5 C.90*

+ I.O0C.9Oe

+ 1.85030'

+ 1.50090°

+ f.75C.90°

+ £.0OC.90c

+225C.90C

+2.50 C.90'

+2.7 5 ago0

+5.00C.90'

+3.85000'

+3.50 C.&04

+4.00C.90'

+0.5 OC. I 80°

+0.2 5O+0.2 59

+0.5 0O- 0.2 5 CD

+0.25;

+050:

5+0.25®

5-0.25©

+0.25:

+0.7 5:

5+0.50®

5-0.5.0©

^+0500+0.2 5®
+0.75O-0.25©

+0.2 5C

+ 1.00;

:+0.75®

:-0.75©

+0.25;

+ 1.25:

H-1.00®

5-1.00©

+0.25:

+ 1.50:

5+1.25®

)-l.25©

+0.25:

+ 1.7 5:

5+1.50®

5-1.50©

+0.25;

+2.00C

+ 1.75®

:-l.75©

+0.2 5C

+2.2 5C

.+2.00®

;-2.00©

+0.2 5:

+2.50

5+2.2 5®

5-2.2 5©

+0.2 5C

+2.7 5C

+2.5 0®

;-2.50©

+0.2 5C

+3.0 0C

+2.7 5®

:-2.7 5©

+0.25O+3.00®

+3.25O-3.00©

+0.2&O+3.25®

+3.5 0.O-3.25©

+0.E 50+3.5 0®

+ 4.0 0O-3.50©

+0.50O+0.5 0®

+ I.00O-0.5 0©

+0.5 0O+0.7 5®

+ I.2 5O-0.75©

+0.5 00+ 1.00®

+ 1.5 00- 1.0 0©

+ 0.5 00+ L25®

+ 1.750-1.25©

+ 0.5 00+ 1.50®

+2000- 1.50©

+0.5 00+ 1.7 5®

+2.2 50-17 5©

+05 00+ 2.0 0®

+2.5DO- 2.0 0©

+0.50C+2.2 5®

+2.7 50-2.25©

+0.5 0O+ 2.50®

+3.D0O-250©

+0.50O+2.7 5®

+3.250-2.7 5©

+0.50O+3.00®

+350O-3.0Q©

+0.50O+3.25®

+4J00O-3.256

+07 5 C.I 80°

+Q.2 50+ 0.50©

+0.7 5O-0.50®

+0.5 0O+ 0.2 56

+0.750-0.25®

+0.75

+ 1.00:

;+0.25CD

5-0.259

+0.7 5C

+ 1.2 5C

+0.50®

:-0.50e

+0.7 5C

+ I.50C

:+0.7 5CD

;-0.756

+0.7 5 C

+ I.75C

>+ 1.0 0®

;-i.ooe

+0.7 5

+2.0 0

5+1.25®

:-l.2 5©

+0.7 5C

+2.2 5C

+ 1.50®

+1.509

+0.7 5C

+2.5 OC

:+l.75<D

:- 1.756

+0.75:

+2.75;

5+2.00®

+2.009

+0.75;

+3.00;

+2.25®

;-2.259

+0.7 5:

+3.25:

5+2.50®

5-2.5 09

+0.75;

+3.5 OC

:+2.7 5®

:-2.756

+0.75:

+4.00:

5+3.00®

5-3.0oe

+ 1.00 0.1 BO"

+0.25O+0.759

+ I.00O-0.75®

+0.5 0O+0.50©

+ 1.0 0O-0.5 0®

+0.7 5O+0.2 5©

+ 1.0 0O-0.2 5®

+I.0 0O+0.25®

+ I.25O-0.25©

+ 1.0 0O+0.5 0®

+ 1.5 0O-0.50©

+ I.0 0O+0.75®

+ I.7 5O-0.75©

+ I.00O+I.00®

+2.00O-I.00©

+ I.00O+ 1.25®

+2.2 50-1.25©

+ I.00O+I.50®

+2.5 00- 1.50©

+ I.00O+I.75®

+2.7 50-1.75©

+ I.0 0O+2.00®

+3.00O-2.00©

+ 1.0 0O+2.2 5®

+3.2 50-2.25©

+ 1.0 00+ 2.50®

+3.5 0O-2 50©

+ 1.00 0+27 5®

.+40 0O-2.7 5©

+ I.25C.I 80°

+0.2 50+ 1.00©

+ I.25O-1.00®

+0.5 0O+0.7 5©

+ I.25O-0.75®

+0.75O+0.50©

+ I.25O-050®

+ I.00O+0.25©

+ I.25O-0.25®

+ I.25C

+ I.50C

+0.25®

;-0.25©

+ 1.25

+ 1.75:

5+050®

5-0509

+1.25;

+2.0 oc

;+o.?5®

+D.75©

+ 1.25:

+2.25:

5+1.00®

5-1.0 oe

+ 1.25;

+2.50:

:+i.25®

:-i.25©

+ I.25C

+2.7 5;

:+i.50®

:-i.5 0©

+1.25;

+3.00;

H-1.75®

+ 1.75©

+1.25;

+3.25;

+2.00®

;-2.oo©

+1.25;

+3.50;

:+225®

:-2.25©

+ I.25C

+4Q0C

;+2.50®

+2.50©

+I.50C.I SO

+0.2 50+ 1.25©

+ I.50O-I.25®

+0.50O+I.00©

+ I.50O-I.00®

+0.75O+0.75©

+ I.50O-0.75®

+ I.00O+0.50©

+ I.50O-0.50®

+ 1.250+0.25©

+ I.50O-0.25®

+ I.50O+0.25®

+ I.75O-0.25©

+ 1.5 0O+0.5 0®

+ 2.00O-0.5 0©

+ 1.5 0O+0.7 5®

+2.2 50- 0.7 5©

+ I.50O+I.00®

+2.5 00- 1.00©

+ 1.5 00+ 1.25®

+2.750-1.25©

+ I.5DO+I.50®

+3.000- 1.50©

+ I.50O+I.75®

+3.250-1.7 5©

+ I.50O+2.00®

+3.50O-2D06

+ I.50O+225®

+4.000-2.856

+ I.75C.I80*

+0.2 50+ 1. 5 06

+ I.75O-I.50®

+0.5 0O+I.2 56

+ 1.7 50-1.25®

+0.75O+I.006

+ 1.7 5O-I.00®

+ I.0 0O+0.759

+ I.75O-0.7 5®

+ I.25O+0.5D6

+ 1.7 50-050®

+ 1.5 00+ 0.256

+ I.75O-0.25®

0
+ I.75O+0.25®

+2.00O-025©

+ I.7 5C+0.50®

+2.2 5O-0.50©

+ I.75O+0.75®

+2.5 0O-0.7 5©

+ I.75O+I.00®

+2.7 5O-I.00©

+ 1.7 50+1.25®

+3.00O-I.25©

+ I.75O+I.50®

+3.2 50- 1.5 06

+ 1.750+1.75®

+3.50O-I.75©

+ I.75O+2.00®

+4.000-2.00©

+2.00 C.I 80°

+0.2 50+ 1.756

+2.00O-I.75®

+0.5DO+I.506

+2.0 00- 1.50®

+0.7 50+ 1.2 56

+2.00O-I.25®

+ I.00O+I.00©

+2.00O-I.00®

+ I.25O+0.756

+£000-0.75®

+ 1.5 0O+0.5 0©

+2.00O-0.5 0®

+ 1.7 50+025©

+2.000-02 5®

+2.0 0O+0.25®

+225O-0.25©

+2.00 0+05 0®

+250O-0.506

+2.00O+0.75®

+2.75 O-0.7 5 6

+2.00O+I.00®

+300O-I.00©

+2.00O+I.25®

+3.250-1.256

+2.0 00+ 1.50®

+35 0O- 1.506

+2.00O+I.75®

+4.00O-I.75©

+225CI800

+0.2 50+2.00©

+225O-2.00®

+05 00+ 1.7 5©

+2.250-1.75®

+0.750+150©

+2.250- 1.50®

+ 1.0 00+ 1.25©

+2.250-1.25®

+ 1.250+ 1.00©

+£250-1.00®

+ 1.5 0O+0.7 5©

+2.2 5O-0.7 5®

+ 1.750+050©

+2250-050®

+2.0 0O+0.25©

+225O-0.25®

+2.2 50+02 5®

+2.5 0O-0.2 5©

+2.25O+0.5 0®

+2.7 50-050©

+2.250+07 5®

+3.00O-0.75©

+225O+I.00®

+3250- 1009

+2.250+125®

+3.50O- 1.25©

+22 50+ 1.50®

+4.00O- 1.50©

+2.50 CI 80°

+0250+225©

+2500-225®

+050:

+2.50:

1+2.00©

5-2.00®

+0.75:

+2.5 Q:

5+1.7 5©

5-1.75®

+ 1.00:

+2.50:

5+1.50©

5-1.50®

+ 1.25c

+25 OC

:+l.25©

:-l.25ffi

+ 1.50;

+25 OC

:+i.oo©

+1.00®

+ 1.75

+250:

5+0.75©

>-0.7 5®

+2.00C

+250C

+0.50©

:-050®

+2.25:

+250:

5+0.25©

5~025®

+2.5 00+02 5®

+2.75O-0.25©

+2.50O+0.5 0®

+3.00O-0.5 0©

+2.5 0O+0.7 5®

+3.2 5O-0.7 5©

+2.50O+I.00®

+3.50O-I.00©

+250O+I.25®

+4.00O-I.25©

+2.7 5CI B0°

+0.25:

+2.75

+050:

+2.75:

+0.75;

+■2.7 5;

5+250©

5-250®

5+2£5©

5-2J25®

009

DO®

+■1.00:

+2.75:

M-I.|75e
;— 1.750)

+■125;

+2.75:

+1.50;

+2.75:

+1.75:

+2.75;

+2.00:

+2.75:

5+0.1? 5©
5-0^5®

+225;

+2.75C

+050©

:-0B0CD

+2.5 0;

+2.75C

+0|5©
>-0.?5®

+2.75O+0.25®

+3.000-0.25©

+2.75O+D50®

+32 5O-0.506

+2.75O+0.75®

+3500-0.^56
+2.750+1.CJO®
+4.00O-I. C 06

+3.00 CI 80°

+0.2 50+2.7 56

+3.00O-2.75®

+0.500+2.50©

+3.0 0O-2.5 0®

+0.7 50+2.256

+3.00O-2.25®

+I.00O+2.00©

+3.00O-2.00®

+1.250+1.759

+3.00O- i.7 5®

+ I.50O+I.50©

+3.000- 1.50®

+ 1.75:

+3.00:

5+1.259

5-125®

+2.00:

+3.00:

5+ 1.009

;— i.odcd

+225;

+3.00;

:+0.756

:-0.75®

+2 50;

+3.0 OC

+ 0.509

:-050®

+2.75;

+3.00C

:+025©

;-0.25®

+3.0 0)
+3.00O+0.25®

+125O-0.25©

+3.0 00+050®

+350O-0.5 0©

+3.00O+0.7 5®

+4B 0O-0.7 5©

+3.25CI 80

+025O+3.006

+325O-3.00®

+0.50O+2.7 5©

+3250-2.75®

+0.7 50+2.5 0©

+3.2 50-2.5 0®

+ 1.0 0O+2.2 5©

+3250-2.25®

+I.25O+2.00©

+3.25O-2D0®

+ 1.5 00+ 1.7 5©

+3.250-1.75®

+I.7SO+ 1.50©

+3.250-1.5 0®

+2.00:

+3.25:

5+1.25©

5~I25®

+2.25C

+3.25C

:+l.00©

+1.00®

+25 0;

+3.25C

+0.75©

)-0.75®

+2.75:

+3.25:

5+050©

5-050®

+3.00

+3.25:

5+0.25©

5-0.25®

+325O+0.25®

+3.5 0O-0.2 56

+3.25O+050®

+4.00C-050©

+3.50CI 80

+0.2 50+3.2 5©

+3.500-325®

+0.5 0;

+3.50;

+3.00©

:-3.00®

+0.7 5:

+3.5 0:

5+2.75©

5-2.75®

+1.00:

+350:

5+250©

5-2.50®

+ 1.25:

+3.50;

5+225©

5-2.25®

+ 1.50;

+3.5 OC

:+2.00©

:-2.00®

+I.75C

+3.5 OC

+ 1.75©

-1.75®

+2.0 OC

+3.50C

:+l.50©

;-|.50®

+22 5C

+3.5 OC

:+ 1.256

:-l.25®

+250C

+3.5 DC

+•1.00©

:-|.00®

+2.7 5C

+3.50C

:+0.75©

:-0.75®

+3.0 OC

+35 OC

+050©

:-050®

+32 5C

+3.5 OC

H-0.25©

:-0.25®

+3500+025®

+4.0 0O-0.2 5©

+4.00CI 80°

+0250+3.5 0©

+4.000-3.50®

+0.5 0O+3.2 5©

+4.00O-3.25®

+0.75O+3.00©

+4.00O-3.00®

+ I.0DO+2.75©

+4.00O-2.75®

+ 1.250+2.5 0©

+4.00O-2.50®

+ 1.5 0O+2.2 5©

+4.0 0O-2.2 5®

+ I.75O+2.006

+4.00O-2.00®

+2.00O+I.759

+4.00O-I.75®

+2.2 50+- 1.5 0©

+4.00O-I.50®

+2.5 00+ 1.2 5©

+4.00O-I.2 5®

+2.750+ 1.009

+4.00O-I.00®

+3.00O+0.759

+4.00O-0.75®

+325O+0.506

+4.00O-05D®

+3.5 0O+0.2 59

+4.0QO-0.2 5®

+4.00

C. * Pft£NTI C ff, r£C/r,

In the above formula the first numerals apply to spherical, and the second to cylindrical refraction, for which, in the appended signs, the upright and horizontal diameters ( | and — ) of the

circles denote the axes 90° and 180°, respectively, or diametrically opposed axes.

With the exception of the diagonal column of spherical equivalents, each field contains both the double and periscopic form of convex sphero-cylindrical equivalent. For crossed concave

cylinders it is merely necessary to reverse the signs + and — wherever they occur.
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II. TABLE OF CROSSED CYLINDERS AND THEIR SPHERO-CYLINDRICAL EQUIVALENTS.

CONCAVO-CONVEX MERIDIANS.

DIOPTRICS. +0.25C.I80" + 0500.180° +0.7 5 CI 80" + 1.00 CI 80° + I.25CI80" + I.50C.I80" + I.75CI80" +2.00 CI 80° +225 CI 80° +2.500.180° +2.7 5 C.I cJ0° +3.00 C.I 80* +325C.I80" +3.50 CI 80° +4.00CI80*

-0.250.90°
+0.250-0500

-0250+050©

+0.500-0.750

-0250+0.75©

+0.750-1.000

-0.250+1.00©

+ I.00O-I.25®

-02 50+ 1.2 5©

+ I.25O-I.SO0

-0.25O+I.5P9

+ I.50O-I.75®

-0.250+1.759

+ I.75O-2.00®

-0.25O+2.00©

+2J3.00-2.25®

-02 50+2.25©

+225O-2.50®

-025O+2.50©

+2.500-2.75®.

-0.25O+2.75©.

+2.75O-30-0®

-025O+3.0J0©
+3.0 0O-325®

-0.25O+3.25©

+3.2 50-3.5 0®

-0.2 50+3.5 0©

+3.5 0O-3.7 5®

-025O+3.75©

+ 4.0 00-425®

-0.2 50+42 5©

-0.50 C.90"
+O.25O-O.750

-050O+0.75©

+05 0O- 1.000

-0.5 00+ 1.00©

+0.7 50- 1.25®

-050O+I.25©

+ I.OOO-I.5O0

-0.5 0O+I.50©

+ 1.250-1,750

-0.5 0O+ 1.7 5©

+I.50C-2.00®

-050O+2.00©

+ 1.750-225®

-050O+2.25©

+2.00O-2.50®

-0500+250©

+2.25C-2.75®

-05 0O+2.75©

+2.50O-3.00®

-0.50O+3.00©

+2.7 5 0-3.2!$0

-05QO+3.2[5e
+3.0 0O-350®

-05 0O+3.5 0©

+3250-3.75®

-0.5 0O+3.75©

+3.5 0O- 4.00®

-0.50O+4.00©

+4.00O-4.50®

-0500+4500

-0.75C.900
+0.250- 1.000

-0.75O+I.00©

+0.5 0O- 1.25®

-0.75O+I.25©

+O.75O-I.5O0

-0.75O+I.50©

+ I.OOO-I.750

-0.7 50+1.75©

+ I.25O-2.00®

-0.75O+2.00©

+ I.50O-225®

-0.75O+225©

+ I.75O-2.50®

-0.75O+250©

+2.00O-2.75®

-0.750+2.75©

+225O-3.00®

-0.750+100©

+2.500-325®

-0.7 50+3.25©

+2750-3500

-0.75O+3.5JP©

+3.00O-3.75®

-0.7 50+3.7 5©

+3.2 5O-4.00®

-0.75O+4.00©

+3500-425®

-0.75O+4259

+4.00O-4.75®

-0.7 50+4.75©

-I.00C.900
+0.2 50-1.250

-I.00O+I.25©-

+0.5 0O- 1.500

-1.0 0O+ 1.50©.

+0.7 SO- 1.7 5®

-I.00O+I.75©

+ I.00O-2.00®

-I.00O+2.00©

+ 1.250-225®

-I.00O+2.25©

+ 1.500-25 00

-1.0 00+250©

+ 1.750-2.75®

-1.000+2.75©

+2.00O-3.00®

-I.00O+3.00©

+2.250-325®

-I.00O+3.25©

+250O-3.50®:

-1.00O+350©

+2.750-3.75®.

-I.00O+3.75©

+3.00O-4.00®

-I.0 0O+4.00©

+3250-425®

-1.0 00+425©

+350O-450®

-1.0 0O+450©

+4.00O-5.00®

-I.00O+5.00©

-I.25C.900
+0250- 1.500

-1.250+ 1.50©

+0.50O-l.750

-1.250+1.75©

+0.75O-2.00®

-I.25O+2.00©

+ 1.0 00-22 5®

'- 1.250+2.25©

+ I25O-250®

-I.25O+250©

+ I50O-2.7E®

-1.250+2.75©

+1.750-3.000

-I.25O+3.00©

+2.0QO-3.25®

-i.250+3.25©

+2.250-35 p®

-1.2 50+3.5 0©

+250O-3.75®

-1.250+3.75©

+2.7 5O-4.00®,

-l.25Of4.00©

+3.00O-4.25®

-1.250+4.25©

+32 50-450®

-1.250+450©

+3.5 0O-4.75®

-1.250+4.75©

+ 4.00O-525®

-1.250+525©

-1.500.90"
+0.2 5 0-1.7 50

-I.50O+I.75©

+0.500-2.000

-I.50O+2.00©

+0.7 50-22 5®

-1.5 0O+22 5©

+ I.00O-2.50®

-1.5 00+250©

+ I.250-2.7E®

-I50O+2.75©

+I.50O-3.00®

-i.500+3.009

+1.750-3.25®

-I.50O+3.25©

+2.00O-350®

-I50O+3.50©

+2250-3.75®

-I.50O+375©

+250O-4.00®

-I.50O+4.00©
+2.750-42|5®.
-I50O+42J5©

+3.0 0O-4.50®

-I50O+450©

+3.250-4.75®

-1.5 0O+4.7 5©

+3.50O-5.00®

-1.50O+5.0 be

+ 4.00O-550®

-I.50O+550©

-1.7 5C.90"
+0.250-2.000

-I.75O+2.00©

+0.50 0-2.2 5®

-1.750+225©

+0.7.5O-250®

— 1.7 50+2.5 0©

• +1.00O-2.75®

-1.750+2 75©

+ I.25O-3.00®

-I.7EO+3.00©

+ I.5OO-3.250

-1.750+325©

+ I.75C+3.50®

-I.75O+350©

+2.00O-3.75®

-1.750+3.75©

+2.25O-4.00®

-I.7 5O+4.00©

+2.5 00-425®

-1.750+4.25©

+2.750-45 00

-I.75O+4.EJO0

+3.00O-4.75®

-1.750+4.75©

+3250-500®

-1.7 5O+5.00©

+3.50O-5.25®

-1.750+5.25©

+4.0 0O-5.7 6®

-1.750+5.75©

-2.00C.900
+0250-225®

-2.00O+225© :

+0.50O-2.50®

-2J30O+2.50©

+0.7 50-2.7 5®

-2.0 00+27 5©

+ I.OOO-3.DO0

-2.00O+3.00©

+ I.25O-3.2S0

-2.0 00+325©

+ 1.50 0-3.5 00

-2.000+3.50©

+1.750-3.75®

-2.00O+3.75©

+2.00O-4.00®

-2.00O+4.00©

+2.250-425®

-2.00O+4.25©

+2.50O-450®

-2.00O+4.50©

+2.750-4.75®

-200O+4.75©

+3.00O-5.00®

-2.00O+5.00©

+3.250-5.25®

-2J0 0O+5.2 5©

+3500-550®

-2.00O+5.50©

+4.00C-6.00®

-2.00O+C00©

-2.25090°
+0.250-250®

-2.2 5 0+2.5 0©

+0.500-2.7 50

-22SO+2.75©

+0.75O-3.00®

.-225O+3.00©

+ 1.000-3.2 S®

-2250+325©

+ 1.250-350®

.-22 5 0+3.5 0©

+ I.50O-3.75®

-2.250+3.75©

+I.75O-4.00®

-225O+4.00©

+2.0 00-425®

-2.250+425©

+2250-450®

-2250+4.50©

+250O-4.75®

-2250+4.75©

+2.7 5O-5.0 00

-22 5O+5.00©

+3.00O-525®

-2.250+5250

+3250-550®

-2.250+550©

+3.5 0O-5.7 5®

-2250+5.75©

+4.00O-625®

-2250+625©

-2.5 0C.900
+O25O-2.750

-2.50C+2.7 5©

+0500-30 00

-2.50O+3.00©

+0.7 50-3.2 5®

-2.500+3.2 5©

+ 1.0 00-350®

-2500+3.5 0©

+ 1250-3.75®

-2500+375©

+ I.5.0O-4.00®

-2.50O+4D0©

+ 1.750-4.25®

-2500+425©

+2.00O-4.50®

-2.5 00+4.5 0©

+2250-4.75®

-2.50O+4.75©

+2.50O-5.00®

-250O+5.00©

+2.750-5.250

-25 0O+5.2 5©

+3.00O-550®

-250O+5.50©

+3250-5.75®

-2.50O+5.75©

+3.50O-6.00®

-2.50O+B.00©

+400O-B50®

-250O+6.50©

-2.75C.90"
■+0.25O-3.00®

-2.7 5O+3.00©

+0.500-3.250

-2.750+3.25©

+0.7 50-3.5 0®

-2.7 50+3.5 0©

+ I.00O-3.75®

-2.750+3.75©

+ I25O-4.00®

-2.750+4.00©

+ I.50O-4.25®

-2.750+4.25©

+ 1.7 50-4.5 0®

-2,750+4.50©

+2.00 0-4.75®

-2.750+4.75©

+225O-5.00®

-2.7 5 0+5.6 0©
+2.50 0-5.2 5®

-2.750+525©

+2.7 50-550®

-2.7 5O+5.50©

+300O-5.75®

-2.750+5.75©

+325O-6.00®

-2.75O+6.00©

+350O-6.25®

-2.750+B.25©

+ 4.00O-6.75®

-2.750+6.75©

-3.00 C.906
+O.25O-3250

-3.0 00+32 5©

+O5OO-3.5O0

-3.0DO+350©

+0.7 50-3.7 5®

-3.00O+3.7 5©

+ I.00O-4.00®

-3.00O+4.00©

+1250-425®

-3.0 00+42 5©

+ I.5OO-4.5O0

-3.00O+450©

+ 1.750-4.75®

-3.0 0O+47 5©

+2.00O-5.00®

-3.0 00+500©

+2250-5.25®

-3.00O+5.25©

+25 00-550®

-3.0 0O+550©

+2.7 50-5.75®

-3,00O+S.7 5©

+3.0 0O-C00®

-3.00O+6.00©

+3250-6.25®

-3D U 0+625©

+3.50O-6.50®

-3.0 0O+6.50©

+ 4.00O-7.00®

-3.0 0O+7.00©

-3.25C.900
+0.2 50-3500

-3250+3.5 0©

+O5OO-3.750

-3.250+3.75©

+0.75O-4.00®

-3.25O+4.00©

+ I.QOO-4.250

-3.250+425©

+ I25O-450®

-3250+450©

+ I.50O-475®

-3.25 0+4.7 E©

+ I.75O.-5.00®

-3.25O+5.00©

+2.00O-5.25®

-3250+525©

+2250-550®

-3.25O+550©

+2500-5.7 5®

-2.2 50+5.75©

+2.75O-S.00®

-325O+6.0 B©

+3.0 00-6.2 5®

-3250+B.25©

+32 5O-6.50®

-3250+650©

+350O-6.75®

-3250+6.75©

+4.0 0O-7. 25®

-3250+7.25©

-3.50C900
+02 50-3.75®

-3.50O+3.75©

+050O-4.00®

-35 0O+4.00©

+0.7 50-4.2 5®

-3500+4.25©

+ I.00O-4.50®

-3500+450©

+1.250-4.75®

-3500+4.7 5©

+ I50O-5.00®

-350O+5.00©

+ 1.750-5.25®

-350O+5.25©

+2.00O-550®

-3.5 0O+550©

+2250-5.75®

-350O+5.75©

+2.50O-G.00®

-3.5 00+ 6.00©

+2.7 50-62J5®
-3.5 0O+625©

+3.0 00-650®

-3.5 0O+6.5 0©

+3250-6.75®

-35 0O+6.75©

+35 0O-7.00®

-350O+7.00©

+4.0OO-7.5O0

-3.5 0O+7.5 0©

-4.00C900
+0250-4250

-4.0 00+425©

+O.5OC-4.5O0

-4.0 00+450©

+0.75O-4.7 5®

-4.000+4.7 5©

+ I.00O-5.00®

-4.00O+5.00©

+1250-525®

-4.00 0+5.25©

+1. 500-55 0®

-4.00O+5.50©

+1.750-5.75®

-4.00O+5.75©

+2.00O-6.00®

-4.00O+6.00©

+2250-6.25®

-4.000+6.2 5©

+250O-a5 0®

-4.00O+650©

+2.7 5 0-6.7b®

-4.00O+6.7|5e

+3.00O-7.00®

-4D 0O+7.00©

+3250-7.25®

-4.00O+7.25©

"+3.500- 7.50®

-400O+7.50©

+4.00O-8.00®

-4.00O+8.00©

c/tit. frettrice, nor.

In the above formulas the first numerals apply to spherical, and the second to cylindrical refraction, for which, in the appended signs, the upright and horizontal diameters ( | and — ) of the
circles denote the axes 90° and 180°, respectively, or diametrically opposed axes.

Practical equivalents are only to be obtained when the component numerals of formulas coincide with those included in the adopted graduation of the dioptric scale, page 41.

For crossed cylinders of which the concave axes are at 180° and the convex at 90° it is merely necessary to reverse the axes throughout, and for any combination at right angles within the
limits 0° and 180°, by substituting the new axis for that accompanying its correlative cylinder in the above table.
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