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PREFACE.

SHORTLY
after publication of my "Treatise on Ophthalmic

Lenses," Dr. Swan M. Burnett, of Washington, D. C, kindly

suggested the execution of plastic models of combined cylindrical

lenses, by placing a set of these, conceived and hastily prepared by

himself, in my hands for further elaboration ; with the request, if

possible, also to produce two combinations in which the cylinders were

to be united at angles other than right angles. As the result of my

research, during the time devoted to the construction of the latter more

especially, and with a view to establish confidence in the precision of

these models, this mathematical demonstration is presented.

For convenience of reference, the subject has been divided under

seemingly appropriate headings, liberty being taken to introduce the

qualifying terms—congeneric, as implying cylinders of the same class,

both being convex or concave, and contra-generic, coined by myself to

designate cylinders o\ the opposite class, convex and concave.

In the theorem for combined congeneric cylinders, the full reduc

tion of the formula? is given, it being deemed sufficient, in the second

theorem, merely to indicate the means by which the results have been

obtained.

For the benefit of those indisposed to follow the subject in all its

details, it has been thought befitting to append a series of values, cal

culated by the formulae, which the reader may also easily verify by

practical experiment.

While the diagrams have been prepared with great care, yet they

are somewhat at variance with the laws of true "perspective, it being my
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object, in the interest of greater clearness, to strictly preserve all

important circles and right angles referred to in the text. Two of the

plates have been printed upon detached cards to facilitate reference.

A careful study of these diagrams is urgently advised, since it is to my

truthful conception of them I so largely attribute my success in pre

senting these general formulse, which, to my knowledge, are the first to

be advanced as containing the known quantities of cylindrical foci and

axial deviation only.

A more simple and convenient form may ultimately be given the for

mulae, though as here presented it is believed they will prove sufficiently

adequate when their limited application is considered. Their transfor

mations, as adapted to the requirements of the metric system, which are

given at the close, are also believed to suffice in expression of their

terms in refraction.

The text having been somewhat hastily prepared, I feel obliged to

ask the reader's kind indulgence for its deficiencies, in the hope that

others, in the future, may give this subject, which contains so many

points of interest hitherto unpublished, that consideration of which it

is deserving.

This first publication is therefore confined to an exceedingly

limited edition, particularly as it is likely to prove comprehensive and

of advantage only to ophthalmic surgeons.
•

Suspecting my attempt to instruct, while in the capacity of an

optician, may call forth unusual criticism, I trust the same will be

mitigated when it is known that this effort is based upon the mere

recollections of my earlier mathematical studies in Germany, which

were prematurely terminated while in pursuit of a technical profession.

Chas. F. Prentice.

New York, May, 1888.
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I. DIOPTRIC FORMULAE

FOR COMBINED

CONGENERIC CYLINDRICAL LENSES.

1. RELATIVE POSITIONS OF THE PRIMARY AND SECONDARY

PLANES OF REFRACTION.

In the following theorems, a prior knowledge of the established

mathematical deductions applied to lenses, for parallel rays incident in

the immediate vicinity of the optical axis, and in which the lenses'

thicknesses are considered vanishing quantities in proportion to the

focal distances, is taken for granted ; as the formulas here advanced are

to be considered dependent upon those which have not been carried

beyond first approximations. Practically, in almost all cases that occur,

the thicknesses of the combined lenses are very small quantities com

pared to the other dimensions involved, so that we shall consider the

cylinders to be so thin that their centres may be supposed to coincide,

and in which case the focal distances are to be counted from a plane

perpendicular to the optical axis, in the optical centre of the combined

lenses.

In Plate I, two combined convex cylindrical lenses are shown, which,

while somewhat at variance with the prescribed conditions of thickness,

will, however, better serve to make our subject clear.

The dotted circle shown within the lenses, with its centre at the

optical centre o, shall represent the plane above alluded to.

The passive or axial planes of the cylinders are shown by dotted

parallelograms at A and a, bisecting each other under the angle Aoa

= y in the optical axis at o ; and their active planes of refraction C

and c, which are of necessity at right angles to their correlative axial
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planes, similarly bisect each other at the same point. Hence, < Coc

= < Aoa = y.

The compound lens, thus presented, consists of two congeneric

cylindrical elements, each of which, independently considered, will have

its corresponding focal plane, which, for convenience, we may term an

elementary focal plane of the combination. Thus, Ex and E2, at the

focal distances ft and/3, are the elementary focal planes for the cylin

ders C and c, respectively. The cylinder C will consequently have the

property of deflecting a ray, incident at D, perpendicularly from Dx, in

the plane E1} to the point Zt of the axial plane A1Z1, while the cylin

der c will have the property of deflecting a ray incident at the same

point, perpendicularly from D2, in the plane E2, to the point V2 of

the axial plane aso2.

The greatest amplitude of deflection for C will therefore be Dx Zx

in the plane E1} and for c will be D2 V2 in the plane E2. It is further

manifest that the refracted ray DV1V2, contributed by c only, in

attaining to its greatest deflection D2 V2 in the plane E2, would pene

trate the plane Et at V1 ,
and in it present a proportionate deflection

dxyx.

DXZX and Dx Vt, being amplitudes of deflection reduced to the

same plane Et , will bear the same relation to each other as their cor

responding refractions. Thus,

D1Z1:±=D1V1 :-£-;
J\ J 8

or, D\z\ = -f- >
when Dx Vx = -j- ,

which may easily be shown to be the case when the deflections are

measured in a plane one inch from the lens. *

Conditional, therefore, that the deflections are measured, within the

same plane, from a point Dx of the same line of incidence DDX, we

may attain to the resultant of two deflections DXZX and D1V1, for

any angular deviation existing between them at Dt, by the physical

law governing similarly united forces. DXMX, as the diagonal of the

* "Refraction and Accommodation of the Eye," by'E. Landolt, M.D., Paris,

translated by O M. Culver, M.A., M.D., Philadelphia, 1886 (see page 58).
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parallelogram Dx VXMXZX, will consequently be the resultant deflection

accruing from a combination of the cylinders C and c.

As each cylinder contributes a plane of active and one of passive

refraction, we shall evidently obtain two resultant principal planes for

their combination, the one of greatest refraction, commonly called

the primary plane, DDxoxo, intersecting the angle Coc = y between

the active planes of refraction C and c, and one of least refraction,

termed the secondary plane, dd2o2o, intersecting the angle Aoa = y

between the passive or axial planes A and a.

The primary plane, in penetrating the plane Ex, will consequently

divide the angle Cxoxcx = Coc = y into Dxoxcx = « and DxoxCx
= (3. In the plane Ex we shall then find the angles a and (3

to be directly dependent upon the associated deflections DXZX and

DXVX for the point Dx. In the plane E2 a similar division of the

angle A2o2a2, by the secondary plane, will be rendered dependent upon

d2v2 and d2z2 for the point d2. As to this, the diagram is believed

to be sufficiently clear, without further reference.

Since the resultants DX3IX and d2m2 will define the directions of

the refracted rays DMX and dm2, it is further evident that for D and d

to be points of the primary and secondary planes, respectively, they will

have to be so chosen that DXMX and dsm2 shall be directed to the opti

cal axis ooxo2 ; and as we shall later learn, this is but one of the

restrictions which renders a diagram somewhat difficult of construction.

The resultant deflections DXMX and d2m2 are consequently shown as

being in the primary plane, coincident with Dxox, and in the secondary

plane coincident with d2o2, respectively.

For all intermediate points of the circle, we should find the result

ant deflections to deviate from the optical axis. This has been taken

advantage of in constructing Dr. Burnett's models, and in deter

mining the directions of twelve refracted rays in each of the figures 2,

Plates II and IV.

The position of the primary plane DDxoxo, shown as dividing the

angle Cxoxcx = y so that

y = <* + P, (1)

will then be determined by fixing the relations existing between «

and (3.
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In the plane Ex, from the triangle DXZXMX, we have

DXZX : ZXMX = sin < ZXMXDX : sin < ZXDXMX,

< ZXMXDX = < Dxoxcx = a,

by parallelism of ZXMX and cxox ; and, for similar reasons,

< Z^^ = < DxiMx V1 = DxoxCx = (3.

.: DXZX : ZXMX = sin a : sin (3,

ZXMX = Dx Vx.

.-. DXZX: DXVX = sin a: sin (3 (2)

In the oblique plane DD2 V2 we find

Dx Vx :D2V2= DDi : DD2;

or, as DDX and DD2 are the focal distances fx and f2 of the cylinders

C and c, respectively,

DXVX:D2V2 =/,:/, (3)

Multiplying the equations (2) and (3), we obtain,

^i^i
_ !HL^f li . . . . (±)

D2V2~ sin(3 f2-
'

K)

Since Dxox is the radius of the circle indicated, we may, for con

venience, ascribe to it' the value 1. We shall then have,

DXZX = sin < DxoxZx,

< DxoxZx = < CxoxZx
- <DxoxCx.

.: <DxoxZx = 90°- (3.

.-. DXZX = sin (90°— (3) = cos (3. . . (5)

In the plane E2 we similarly find,

D2 V2 = sin < D2o2 V2,

< D2o2 V2 = < V2o2c2
— < D2o2c2.

:. < D2o2 V2 = 90°- «.

.-. D2 V2 = sin (90°— «) = cos «. (6)
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Substituting the values for DXZX and D2 V2 from (5) and (6) in the

equation (4), we obtain,

cos (3 sin a fx _

cos a sin (3 f2
'

or. by multiplying both members of equation by 2 and transposing,

f
2 cos (3 sin (3 = 2 cos « sin « ^r •

:. sin 2(3 = sin 2a fy • (7)

The position of the secondary plane dd2o2o, shown as dividing the

angle A2o2a2 = y into d2o2a2 = a and d2o2A2 = (3, provided d2o2

is perpendicular to D2o2, will be determined by similarly fixing the

relations between « and (3.

In the plane E2, from the triangle d2z2m2, we have

d2z2 : z2m2 = sin < z2m2d2 : sin < z2d2m2,

< z2m2d2 = < m2d2v2,

by parallelism z2m2 and d2v2 ; or, as < m2d2v2 = < d2v2o2 —

< v2o2d2 = 90°— «,

sin < z.2m2d2 = sin (90 — «) = cos «.

Similarly, sin < z2d2m2 = sin (90°— /3) = cos (3.

.'. d2z2 : z2m2 = cos « : cos (3,

z2m2
= d2v2.

.: d2z2 : d2v2 = cos « : cos (3 (8)

In the oblique plane dd2z2, we find

dxzx : d2z2 = ddx : dd2 ;

or, as ddx = fx and <MS =/s,

^i*i :^2z2 =A'ft (9)
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Multiplying the equations (8) and (9), we obtain,

dxzx
__

cos a, /, #

(10)
d2v2 cos (3 f2

'

and, since d2o2 = dxox = radius = 1,

dxzx = sin < dxoxAx = sin < d2o2A2 = sin (3, . (11)

d2v2 = sin a (12)

Substituting these values in (10),

sin (3 cos a fx
sin a cos (3 f2

f
.'. 2 sin (3 cos (3 = 2 sin a cos a ^A •

/ 2

f
or, as before, sin 2(3 = sin 2« — •

As the same relations, deduced from the deflections dxzx and d2v2,

lender provisions that d2o2 J_ E2o2, are here shown to exist between

a and (3 as were obtained from DXZX and D2 V2, we are to conclude

that :

1. The primary and secondary planes of refraction are at

right angles to each other for any angular deviation of the axes

of two combined congeneric cylindrical lenses.

In a further consideration of the relation (7),

f
sin 2(3 = sin 2« *A

,

J2

we observe the sines of double the angles, which are each always less

f
than 90°, to differ merely by the co-efficient ^ •

If, therefore, f2 = fx , which is the case when the cylinders are of

equal refraction, the sin 2(3 will be equal to the sin 2a, which can only

be the case when a = (3, or, as a + 0 = y, when « = (3 = £ ; hence,
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2. For combined congeneric cylinders of equal refraction, the

primary plane equally divides the angle between the active planes

of the cylinders, and the secondary plane similarly divides the

angle between the axial planes of the cylinders.

In case, however, f2 > fx ,
which is the case when the refraction of

the cylinder C is greater than c, then sin 2« > sin 2(3, or, when « > (3,

so that

3. For combined congeneric cylinders of unequal refraction,

the primary plane, in dividing the angle between the active planes

of the cylinders, will be nearer to the active plane of the stronger

cylinder, and the secondary plane consequently nearer to the axial

plane of the same cylinder.

This is also demonstrated in the diagram.

As, for a combination of two cylinders, C and c, under given angu

lar deviation of their axes, the only known quantities will be fx,f2, and

y, it will be necessary to express a and (3 in terms of fx,f2, and y.

This we accomplish through the equations

f
sin 2(3 = sin 2a --^ ,

J 2

a + (3 = y ;

and, as these also contribute elements of vital importance to future

deductions, we shall seek to reduce in a manner adapted to ultimate

reference by placing

fy = * (13)
J 2

The above equations may then be written

sin 2(3 = Tc sin 2«, (14)

(3 = y
— a (15)

.•. sin 2(3 = sin 2y cos 2« — cos 2y sin 2a = h sin 2«. . (16)

sin 2y cos 2a = (k -f cos 2y) sin 2a.
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k + cos 2y .

.*. cos 2a =
sin 2y

sin 2a. . (17)

. „ ~ (k + cos 2y)2 .

0
„

cos2 2a = 1 — sin2 2« =
v

. „„

n
sm2 2a.

sin2 2y

sin2 2«

sin2 2a =

~{k + cos 2y)2

_

sin2 2y

sin2 2y

+ 1 = 1.

sin2 2y

.-. sin 2a =

Hence, from (17),

cos 2« =

(k + cos 2y)2 + sin2 2y k2 + 2k cos 2y + 1

sin 2y

\/k* + 2k cos 2y + 1

k + cos 2y

Vk2 + 2& cos 2y + 1

For convenience, let m = V& + 2k cos 2y + 1.

sin 2y
sin 2a =

cos 2a

m

k + cos 2y

m

(18)

(19)

(20)

From (15), cos 2(3 = cos 2y cos 2a + sin 2y sin 2a.

Replacing cos 2a and sin 2« by their values from (20) and (19),

gives,
(k + cos 2y) cos 2y sin2 2y k cos 2y + 1 . .

cos 2(3 =
——

—

—

K^1)
m m m

Resorting to the general formulas 2 cos2 a = 1 + cos-2« and 2 sin2 «

= 1 — cos 2a, we may write :

COS2 a = i + \ COS 2a,

sin2 a = \
— £ cos 2a.

Similarly, cos2 /3 = \ + * cos 2(3,

sin2 j3 = |- — \ cos 2)3.
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Substituting in these for cos 2« and cos 2(3 their values from (20)

and (21) gives,

„ 1 1 k + cos 2y m + k + cos 2y . .

COS" =

2
+

2 m

=
"

~toi
' ' (22)

1 1 k + cos 2y m — k — cos 2y .

sm2 a = ~

—

x
=

^
* *

(^J
2 2 wi 2w

,
1 1 1 -f & cos 2y m + 1 + & cos 2y

cos2 j3 = -

+ »

= ^
•

(^4j
2 2 m 2m

.
„ n

1 1 1 + i cos 2y m —- 1 — k cos 2y ,,._,

■m," =
3-i «

=

i^
• <*°>

The angles a and 0 may then be expressed in terms of fx, f2, and

y, by substituting, in the above formulas, for k and m, their values, as,

for instance,

1,1 f>.
at rr

f
~

+ cos 2y

cos2 a = -

-f-
-

=^y+ 2^ cos2y + 1

or, multiplying both terms of fraction by f2,

t/i i A +/8 cos3y
COS a = A / ^ + o /

' ' '

\l)
V 53 2

V/12 + 2/1/8cos2y +/22

It will be unnecessary to seek (3 in the same manner, since, by (15),

(3 = y
— a.

When reducing the above formula, for any given value of y, pur

suant to reasons later given, it should be observed that /3 > fx, in

which case a, within the angle y, is to be counted from the axis of the

toeaker cylinder.
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2. POSITIONS OF THE PRIMARY AND SECONDARY FOCAL

PLANES.

The plane DDxoxo being the primary plane, it follows that all par

allel rays incident in it between D and o will, after refraction, intercept

the optical axis oox at some point, which will be a point of the primary

focal line. Thus, the final ray DMX3I2, in attaining to its greatest

deflection DXMX in the elementary plane Ex, will establish the limiting

position for the primary focal line by its intersection of the optical axis

oo
x,
at Ox.

For similar reasons, in the secondary plane, 02 will be a point of

the secondary focal line, this intersection of the final ray dmxm2 with

the optical axis being more remote in consequence of the inferior de

flection d2m2 in the plane E2.

Like deflections, for opposite cardinal points of the circle within

the lens, will define the directions of the corresponding final rays,

which are shown as limiting the major and minor axes of the ellipses in

the planes Ex and E2, and consequently also the magnitudes of the focal

lines at Ox and 02. Thus, 02M3 represents one half of the secondary

focal line at 02. The primary focal line, in the secondary plane, per

pendicular to YOx at Ox, has been omitted, to avoid possible misinter

pretation of more important points of reference in this region, All

rays parallel to the optical axis, incident at intermediate points of the

circle within the lens, will, upon refraction, intersect the planes Ex and

E2 at correlative points of the ellipses drawn.

The region of transition T, or circle of least confusion, will lie

between the planes Ex and E2. (See Plate II, Fig. 2.) Its position

may be determined through a simple formula advanced by Prof. W.

Steadman Aldis, of the University College, Auckland, New Zealand, in

his consideration of the " focal interval" resulting from rays obliquely
incident upon a spherical lens.*

Our object being to determine the distances of the primary and

secondary focal lines or planes from the principal plane within the

combined cylinders, we may proceed as follows :

*
Elementary Treatise on Geometrical Optics, W. S. Aldis, M.A., Cambridge,

1886 (see page 39).
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In the primary plane DDXMX, we have

DY:DDX = YOx '. DXMX.

Substituting, DY = Oxo = Fx as the primary focus ;

DDX =fx;

YOx = Dxox = radius = 1.

•

F — —A— (20)

In the parallelogram Dx VXMXZX, the angle between the forces,

Dx Vx and DXZX, being equal to < Cxoxcx = y, we have, as the

resultant deflection,

DXMX = V(DxZxy + (Dx Vxf + 2 (Dx Vx) (DXZX) cos y, (27)

in conformity with the statical formula,

R = VP* + Q2 + 2PQ cos y,

for forces P and Q, acting at the same point, within the same plane,

under the angle y.

Substituting in (27) the value of DXZX = cos (3, from (5) ; and of

Dx Vx = fy D2 V2, from (3), = fy cos a, from (6), we obtain,
A J*

DXMX = \ /cos2 (3 + U^J cos2 a + 2-t± cos « cos (3 cos y.

Introducing this value for DXMX in (26),

Fx = .

2

A
(28)

4 /cos2 i3 + (71) cos2 a + 2 ^- cos « cos (3 cos y

Substituting here, as before, --^ = k,
J2
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To reduce the third member under the radical, we deduce from (15),

cos (3 = cos (y — a) = cos y cos a + sin y sin a.

.'. cos a cos (3 = cos y cos2 « + sin y sin a cos a

= cos y cos2 a + \ sin y sin 2a ;

and by substituting (22) and (19) for cos2 « and sin 2«,

(m + k) cos y + cos 2y cos y sin 2y sin y
cos a cos p =

- - 4 x

2»i 2m

But cos 2y cos y -f sin 2y sin y = cos (2y — y) = cos y.

(m 4- & 4- 1) cos y
.•. cos a cos /3 =

cos a cos j3 cos y =

2m

(/^ + k 4- 1) cos2 y

.-. cos a cos (3 cos y =

2m

cos2 y = ^ (1 + cos 2y).

(m + k + 1) (1 + cos 2y)

■. 2& cos a cos /3 cos y =

4m

m + & -f 1 + m cos 2y -{• k cos 2y + cos 2y

4m

m& 4- &2+ k +m& cos 2y + k2 cos 2y + k cos 2y

2m

For the first two members under the radical, by substituting values

from (24) and (22), we have

9 r. , 7 , ,
m + 1 + k cos 2y 4- m&2 4- &3 4- &2 cos 2y

cos2 (3 4- A;2 cos2 a = '-—L- 1 L .

2m

Consequently, the entire value under the radical,

cos2 (3 4- k2 cos2 a 4- 2k cos a cos (3 cos y

_

m&2 4- mk cos 2y 4- m& 4- m 4- &3 4- 2k2 cos 2y 4- k 4- k2 4- 2& cos 2y 4- 1

2m

_
(&2 4- k cos 2y)m 4- (& 4- l)m 4- & (&2 4- 2k cos 2y 4- 1) 4- k2 4- 2& cos 2y 4- 1

2m
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Since, by equation (18), k2 4- 2k cos 2y 4- 1 = m2,

cos2 (3 4- k2 cos2 a 4- 2k cos a cos (3 cos y

_
(k2 -\- k cos 2y) m 4- (k 4- 1) m 4- km2 4- m2

2m

_

k (k 4- cos 2y) 4- (fc 4- 1) 4- (k + 1) m

2

~~

= £ [& (& 4- cos 2y) + (H1)(1 + w)].

Substituting this under the radical in (29), we obtain,

Fx =
f*

V£ [k (k 4- cos 2y) 4- (k 4- 1) (1 4- m)]

Replacing k and m by their values from (13) and (18),

A
F, =

\/W?.+m*)+$.+1t1+\/fflWJr*>+1
Multiplying both terms of fraction by/2,

p __
/1/2

VtLfAA +/. cos 2y) 4- (/i +/,)(/, + Vyi24-2/1/2 cos 2y 4-/22)]

(30)

Transforming, and substituting 1 — 2 sin2 y for cos 2y, we may,

for convenience in calculating, preferably write,

F =

Aft

^(Jl±A2 _/l/8 sin2y4-(/1 +f2W{l1^^- -AA «ma 7

(H)

When the cylinders are of equal refraction, fx being equal to f2 = f,

the above formula, by adequate reduction, assumes the simple form,

Fx =
—-£

(IV)1
1 4- cos y

v '
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In the secondary plane dd2X02, we have

dX : dd2 = X02 : d2m2.

Substituting, dX = O2o = F2 as the secondary focus ;

aa2 = J 2 ',

X02 = radius = 1.

2
—

d2m2

In the parallelogram d2v2m2z2, the angle between the forces, d2v2

and d2z2, being equal to < v2d2z2 = 180 — < A2o2a2 = 180 —

y,

d2m2 = V(d2z2)2+(d2v2)2+ 2(d2v2) (d2z2) cos (180°— y).

f f
Substituting the value for d2z2 = J-f dxzx, from (9), = J-f sin (3,

from (11) ; and for d2v2 = sin a, from (12), we obtain,

cl2m2 = \/ \Jj3 sin2 (3 4- sin2 a — 2^# sin a sin (3 cos y ;

which introduced in (31) gives,

F9 =
f%

2 f
sin2 B 4- sin2 a — 2 -^ sin a sin (3 cos yV%)

f
Multiplying numerator and denominator by ^r ,

/ 2

-y
/ sin2 (3 4- /^ | sin2 a

— 2 ^r sin « sin j3 cos y

and which may then be written,

F2 =
f"

• (32)
V sin2 (3 4- k2 sin2 a — 2k sin a sin (3 cos y
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To reduce the third member under the radical, we have, from (15),

sin (3 = sin y cos « — cos y sin «.

.*. sin « sin (3 = sin y sin a cos « — cos y sin2 a

= \ sin y sin 2a — cos y (\ —

\ cos 2a)

= \ sin y sin 2« + | cos y cos 2« — 1- cos y ;

and by substituting (19) and (20) for sin 2a and cos 2«,

. _ sin 2.y sin y cos 2y cos y 4- k cos y
sin a sin (3 = ^ '-

4
i -*— -1 — i cos y

2m 2m
z

_

cos (2y — y) 4- k cos y
— m cos y

2m

(1 4- k — m) cos y

2m

_7
. .

n
2 (k 4- k2 — mk) cos2 y

.-. 2k sm a sm (3 cos y =
— •

2m

But cos2 y = $ (1 4- cos 2y) ;

(k 4- k2 — mk) (1 4- cos 2y)
.'. 2k sin« sin|3 cosy -

2m

&4-&2—mk-\-k cos 2y+ k2 cos 2y—mk cos 2y
"

2m
'

and for the first two members under the radical, through (25) and (23),

we find,

.n_ 7,.0
m — 1 — & cos 2y 4- mk2 — k3 — k2 cos 2y

sm2 (3 4- k2 sm2 a = — '- .

2?>i

.-. sin2 (3 + k2 sin2 a — 2k sin a sin /3 cos y

??i&2 4- m^ cos 2y 4- mk 4- m— kz—2k2 cos 2y— ^—F—2k cos 2y— 1

2w

(^24-^cos2y)m4-(^4-l)^—&(&24-2fccos2y4-l)— (^24-2^cos2y4-l)
2m
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(k2 4- k cos 2y) m 4- (k 4- 1) m — km2 — m2

2m

_
k(k 4- cos 2y) 4- (k + 1) — (fc + 1) m

_

_

= %[k(k + cos 2y) 4- (& 4- 1) (1 - m)].

Substituting this under the radical- in (32) and replacing k and m

by their values, we obtain,

Fn=
A

^K(^+cos2r)+(^+i)(i-^(f;)2+3f:cos2y+^
Multiplying both terms of fraction by /2,

F0=-
AA

VilA (A +A cos 2y) 4- (A +A )(/, ~ V/, 2 4- 2/a> 2
cos 2y+/,»)]

(33)

Substituting, cos 2y = 1 — 2 sin2 y,

^2 =
/1/2

\/{Jl^-AA sin2y-(A +/,)/iA±&l8_/i/f sin2y

(in)

This formula, reduced for cylinders of equal refraction, /, being

equal to f2 = f, becomes

F2 = 1
(V)2

1 — cos y
v '

It may be of interest to note that these formulae differ from those

given for Fx merely by a minus sign in the denominator.

The preceding formulae being alike applicable for combinations of

convex or concave cylinders, the foci fx and f2 are to be introduced

as positive values, merely with the restriction that f2 be greater than

or equal to /, ,
in either case.
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3. RELATIONS BETWEEN THE PRIMARY AND SECONDARY

FOCAL PLANES.

Since Fx and F2 have been shown to be dependent n\ionfx,f2, and

y, it is evident that, for fixed values of fx and f2, the same will be ren

dered dependent upon successive values of the angle y only.
It is further obvious that the refraction of one cylinder will be

affected most by the other when their axes coincide, or when y = 0°,

and least when their axes are at right angles to each other, or when

y = 90°.

We shall, consequently, fix upon the limits of Fx and F2 for these

extremes of y.

Introducing y = 0°, and consequently cos 2y = 4-1, into the for

mulae (30) and (33), we obtain, for f2 > /,,

tp _ .
J\J2 A.12

F0 =

\/\ [/, (A +A) + (A +A) (/. +A +/,)] A +A
-

AA
=
/i/»

= x

\/\ [A (A +/,) + (A +A) (A -A -A)]
°

■•• Fx:Ft= /^y : oo (34)
/l ~rj2

f f
For Fx = :

1
2~ ,

we shall have as the refraction,
/l +72

-ft
=

~T + T
'

consequently,
*\ A A

4. When the axes of the congeneric cylinders coincide, the pri

mary focal plane will correspond to that focal plane which is

defined by the sum of the refractions of the cylinders, whereas the

secondary focal plane will be at infinity.

This is shown in Plate II, Fig. 1.
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Introducing y = 90°, and consequently cos 2y = cos 180° = — 1,

into (30) and (33), we have, for f2 > fx,

rr
. _

/l/ 2 A J 2
__ f

1
"

|/FF7iT/7=7i)+(/1+/2) (/.+/. -/J]
"

/■
"

pi '__ /1/ 2 _ /1/ 2 _ jc

2

l/i[-/l(/t-/l)+(/l+/.)(/I-/t+/l)]
"

^

••• Fx:F2=fx:f2 (35)

As fx and f2 correspond to the positions of the elementary planes

Ex and E2, it follows that

5. TJie primary and secondary focal planes coincide with their

correlative elementary focal planes, when the axes of the con

generic cylinders of unequal refraction are at right angles to each

other.

This is demonstrated in Plate II, Fig. 2.

In the same relation (35), if fx = f2, then Fx = F2, or

6. The primary, secondary, and elementary focal planes all

merge into one plane, when the axes of the congeneric cylinders of

equal refraction are at right angles to each other.

As in this case we have but one focal plane, the refraction corre

sponds to that of a spherical lens.

Fx being adopted as signifying the primary focal distance, it will

have to be less than F2, yet if fx > f2, we should find, as a conse

quence, by the relation (35), Fx > F2. To retain the significances of

Fx and F2, it will therefore be convenient to substitute f2 by the

greater given value of cylindrical focus, and fx by the lesser, as stated

under the formulae, page 24.

By the previous considerations, between the limits of 0° and 90° for

f f
y, we are then to conclude that Fx will vary between ■•' 1J 2

- and fx,
ft +/2
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while F2 varies between oo and f2, as the nearest and most remote

limits of focal distance.

As an illustration, let Fig. 1, Plate II, represent two combined

convex cylinders of unequal refraction, with their axes coincident, and

so united as to permit of the rotation of one of the cylinders upon the

true planes of their faces, about the optical centre o.

In the position shown (y = 0°), the limiting distance Fx of the

f f
primary focal line will be „

1 2

,
which corresponds to the combined

ft +/2

refraction, —

4- —? ,
of the cylinders in the active plane ; and in

A A

the secondary plane, F2 = <x ;

'

consequently, -=- =
—

= 0, which

corresponds to the refraction in the axial or passive plane of the

cylinders.

The slightest change in the position of one of the cylindrical axes

will give rise to a definite value of the angle y in the Formula III,

thereby bringing F2 within the limits of finite distance, while decreas

ing the value of Fx in the Formula II.

For each successive increase in the angle y, the primary focal plane,

corresponding to Fx, will recede farther and farther from the lens

towards Ex, while the secondary focal plane, corresponding to F2,

approaches nearer and nearer from oo to E2, until y = 90°, when Fx

will have reached Ex, and F2 become merged into E2, as shown in

Plate II, Fig. 2.

Rotation of one of the cylinders is thus associated with correspond

ing changes in the distances Fx and F2, while the movements of their

correlative focal planes will be in opposite directions to each other ;

and, as a consequence :

7. TJie primary and secondary focal planes are conjugate

planes, subject to variations of the angle between the axes of the

congeneric cylinders.

It being impossible to construct a truthful diagram, Plate I, with

out strictly adhering to the principles heretofore explained, it has been

necessary to select elementary foci in marked disproportion to the

curvatures or refractive indices of the cylinders, so as to bring F2

within the limits of the space allotted.



II. DIOPTRIC FORMULA

FOR COMBINED

CONTRA-GENERIC CYLINDERS.

1. RELATIVE POSITIONS OF THE PRINCIPAL POSITIVE AND

NEGATIVE PLANES OF REFRACTION.

In a combination of convex and concave cylinders, we can no longer

have the primary and secondary planes, which we have learned to con

sider as planes of greatest and least refraction, but, instead, we shall

have a plane of greatest positive and one of greatest negative refraction,

synonymously with the generally-adopted distinction between convex

and concave lenses, designated by the signs 4- (plus) and — (minus),

respectively. As the refractions by the convex and concave elements of

the combination are opposing forces, the plane of greatest positive

refraction will evidently lie between the active plane of the convex and

the axial plane of the concave cylinder, while the plane of greatest

negative refraction will be between the active plane of the concave and

the axial plane of the convex cylinder.

In Plate III, therefore, the plane DDxoxo of greatest positive refrac

tion is shown between c and A, and the plane ddxoxo of greatest

negative refraction between C and a, these planes, by provision of their

being at right angles to each other, dividing each of the angles Axo1ci
and Cxoxax into a and (3.

To establish the formulae for combined contra-generic cylinders, we

shall therefore have to ascribe another significance to the angles «

and (3.
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The deviation of the axes Aoa is equal to angle Axoxax = y, and,

since cxox is perpendicular to axox, a + (3 + y is equal to 90° ; conse

quently,

a 4- (3 = 90° —

y (36)

The elementary focal planes E0 and Ex, corresponding to the focal

distances /0 and fx, respectively, are exhibited on opposite sides of the

combined cylinders ; since E0, for the concave cylinder, will be virtual,

and in the negative region before the lens, while Ex, for the convex

cylinder, will be in the positive region behind the lens. Consequently,

for the point D, the convex cylinder c will contribute as its greatest

amplitude of deflection DXZX, perpendicular to axox in the plane Ex,

while the greatest amplitude of deflection for the concave cylinder C

will be D0 V0, perpendicular to A0o0 in the virtual plane E0. As the

incident ray at D will be refracted by the concave cylinder, as if ema

nating from a correlative point F0 of the virtual axial line Y0o0, it is

evident that the direction of the ray refracted by it would be VQPYX.

The proportionate deflection contributed by the concave cylinder,

measured in the plane Ex, will consequently be Dx Yx.

Provided the point D be properly chosen, it will be a point of the

plane of greatest positive refraction, that is to say, when the resultant

deflection DXMX, accruing from the associated deflections Dx Vx and

DXZX in the parallelogram of forces Dx YXMXZX, is directed to the

optical axis.

To insure DX3IX being so directed, it is obvious that the associated

deflections, DXZX and Dx Yx, must also be measured in the plane Ex,

in the positive region behind the lens.

Similar reasoning will apply to the point d as being in the plane

ddxoxo of greatest negative refraction. In this instance, dxmx being a

force directed from the optical axis, in the plane Ex, is to be taken

negative, synonymously with the plane
of greatest negative refraction.

The relations between a and (3 are to be determined by an analogous

method to the one given for congeneric cylinders, whereby we obtain

sin 2a = sin 2/3 £± , (37)
/o



30 DIOPTRIC FORMULAE.

as defining the positions of the planes of greatest positive and negative

refraction, which are again at right angles to each other.

We here also find the sines of double the angles to differ by the

f
co-efficient J-j-

• Hence, when f0 = fx ,
we shall have tt = (3 =

/ o

90°— y

8. For combined contra-generic cylinders of equal refraction,

the plane of greatest positive refraction equally divides the angle

between the active plane of the convex and the axial plane of the

concave cylinder; and the plane of greatest negative refraction

similarly divides the angle between the active plane of the concave

and the axial plane of the convex cylinder.

In case /„ > fx ,
then (3 > « ; or,

9. When the convex cylinder is stronger than the concave cylin

der, the plane of greatest positive refraction will be nearer to the

active plane of the convex, while the plane of greatest negative

refraction will beproportionately farther from the active plane of

the concave cylinder.

In case fx > /0, then a > (3 ; or,

10. When the concave cylinder is stronger than the convex cylin

der, the plane of greatest negative refraction will be nearer to the

active plane of the concave, while the plane of greatest positive

refraction will be proportionately farther from the active plane

of the convex cylinder.

This is manifest in the diagram.

The values of a and (3 may be expressed in terms of fx, f0, and y

in a similar manner to that shown in the previous theorem, by placing

fy = k, (38)
/o

when, by (36) and (37), we shall have,

nf3
k — cos 2y . . _

cos 2(3 = :
—- —L gm 2B.
sm 2y
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•

on
sin 2y

sm 2(3 = ■

V/fc2 — 2k cos 2y 4- 1

Substituting, in this case,

m = Vk2 — 2k cos 2y 4- 1 (39)

sm 2y , .

.-. sm 28 = ——- (40)
m

k — cos 2y .

.•. cos 2(3 = (41)
m

v

1— & cos 2y
cos 2« = —

(42)
m

v '

Resorting to the general formulae mentioned on page 16,

m 4- 1 — k cos 2y
cos2 a = ^ (43)

2m
v '

m — 1 4- k cos 2y
sm2 a = (44)

2m
v '

m + k — cos 2y
COs2/3=:

M ^

m — k 4- cos 2y ■

Bm" =

2m" <46)

Substituting for k and m their values, through (43) we obtain,

* Z1 ,

! /q — /i cos 2y ,Vn
COS « = \ / ~z + q

.

' •

(VI)
V 2 2

V/02-2/0/lCos2y 4-A2

and by equation (36), 3 = 90° - (y 4- «) ;

the latter equations being all that is requisite to locate the positions of

the principal planes of refraction ; the angle a being counted from the

axis of the convex cylinder.
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2. POSITIONS OF THE POSITIVE AND NEGATIVE FOCAL

PLANES.

The positions of the positive and negative focal planes will evidently

here also be determined by the resultant rays, DMX and dmx, and their

correlative intersections with the optical axis at Ox and O0.

Oxm3 will therefore represent one half the focal line in the positive

region behind the lenses, and O0M3 one half the virtual focal line in

the negative region before the same.

The ellipses shown in the planes Ex and E0 are of the same signifi

cance in this as in the preceding combination.

In the plane of greatest positive refraction, DDxYOx, we have

DY: DDX = YOx : DXMX.

Substituting, DY = Oxo = Fx as the positive focus ;

DDX = fx j

YOx = Do = radius = 1.

■'• f' = i^m; <«)

In the parallelogram DXYXMXZX, the angle between the forces,

DXYX and DXZX, is equal to 180° —

y, since DXZX J_ Zxox, and

D1Vx±Axox.

.: DXMX = V(DxZx)2+(DxYx)2+ 2(DxZx)(DxVx)cos(180o-y).

In the oblique plane D0Y0DYXDX, we find,

Dx Vx : DDX =D0V0: DD0.

D0 V0 = sin < D0o0A0 = sin < DxoxAx = sin (3.

DD«=fo-
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.-. DxVx=fy sin (3.
Jo

DXZX = sin (< Zxoxcx — < Dxoxcx) = sin (90° — a) = cos «.

Substituting these values in the equation for DXMX, formula (47)

becomes,

Fx =
fx

—;

\/ cos2 a 4- ( -r ) sin2 /3 — 2 ^r sin 3 cos a cos y
V Vo' /o

and, by placing
J-~ = k, with the aid of the formulae (39), (43), and
/o

(46), upon adequate reduction, we obtain,

F =
/*

Vi [k {k
— cos 2y) + (1 — *) (1 + m)]

Replacing k and m by their values, and multiplying both terms of

fraction by f0, gives,

£7 / 1./ 0

VilA (A -A oos 2y) + (A -/i)(/o + V?02-2/0/1 cos2y 47?)1

(48)

Substituting, cos 2y = 1 — 2 sin2 y,

/i/o

y/(A_/ll2+/o/l sin2y4-(/0-/J|/(-^/1-^4-/o/1 sin2y

(VII)

This formula, when reduced for cylinders of equal positive and

negative refraction, /„ being equal to fx = f, assumes the simple

form

Fx = J— (IX)
sm y

v '
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In the plane of greatest negative refraction, dxmxdO0X, we obtain,

dX : ddx = XO0.: dxmx.

Substituting, dX = O0o = — F0 as the negative focus ;

dd\ = A 5

XO0 = do = radius = 1.

••• -*> = -■&? <49>

since dxmx is to be taken negative.

In the parallelogram dxvxmxzx, the angle between the forces, dxvx

and dxzx, is again 180° —

y ; hence,

dxmx = V(dxzx)2+(dxvx)2+ 2(dxzx) (dxvx) cos (180°-y).

In the oblique plane d0v0dvxdx, we find,

dxvx : ddx = d0v0 : dd0.

d0v0 = sin (< Z>0ood0 — < D0o0A0) = sin (90° — < DxoxAx)

= sin (90° — j3) = cos j3.

aa0 = f y.

f
.\ dxvx = '^r COS j3.

/o

dxzx = sin < dxoxzx = sin a.

Substituting these values in the equations for dxmx and (49), we

have,
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Resorting to the equations (38), (39), (44), and (45), the above may

be given the form, — FQ =

Ah

V&A (A -A cos 2y) 4- (/„ -A )(/o ~ V/02-2/0/1cos2y+/12)]

(50)

F —

±
o
—

/i/o

y/OjL_/ki! +/o/i ain,r+(/i_/j/(/o_/i)? + /„/, sin2y

(VIII)

which differs from the formula given for Fx merely by a transposition

of the elements in the factor before the second radical, and, consequent

ly, when reduced to cylinders of equal refraction, also becomes

-F0 = -J- (X)u
sm y

v '

The formulae (IX) and (X) correspond to those applied to the

Stokes Lens.

In reducing the preceding formulae for given values of cylindrical

foci, f0 is to be substituted by the focus of the concave and fx by the

focus of the convex cylinder, both being introduced as positive values.

3. RELATIONS BETWEEN THE POSITIVE AND NEGATIVE FOCAL

PLANES.

As in this combination the cylinders likewise affect each other most

when their axes coincide, and least when their axes are diametrically

opposed, we may here also fix upon the limits of Fx and — F0 for

y = 0° and y = 90°, as in the previous theorem.

When y = 0°, or cos 2y = 4-1, from the formulae (48) and (50)

we find, for/0 >/„
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P
Jlfo /1/ o

^

|/i[-/i(/o -A) + (/. -/i)(/o -/o +/i)]
0

.-. Fx:-F0=
-ASl_

: _ a, (51)
/o / 1

f f 111
For F. = ■ / °-,-

j
we nave as the refraction -=- =

-^ 7- ;

/o
~

A ^1 /1 /o

consequently,

11. When the convex cylinder is of greater refraction than the

concave, and their axes are coincident, the positive focal plane will

coincide with that focal plane which is defined by the difference of

the refractions of the cylinders,* whereas the negative focal plane

will be at infinity.

Placing y = 0°, or cos 2y = + 1, in the formulae (48) and (50), we

have, for fx > /„,

p _ ./ 1/0 __
J1J0 _

Qp

Vi [A (A -A) - (A -A) (A +A -/„)]

"

°

p _ J1I0
_

/ 1 / 0

j/£ [A (A -A) - (A -A) (A -A +/0)]

~

^ -/»
'

/. Fx:-F0 = ^:--/^-- (52)
J \ / 0

f f 1
For —

F0 =
J iJ °

, we have as the refraction =- =

/1 —Jo -p
0

— (-f j-
) ; consequently,

12. When the concave cylinder is of greater refraction than the

convex, and their axes are coincident, the negative focal plane

will coincide with that focalplanewhich is defined by the difference

of the refractions of the cylinders,* whereas the positive focal plane

will be at infinity.

This is shown in Plate IV, Fig. 1.

* Or the sum of their refractions when taken as positive and negative elements.
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Introducing y = 90°, or cos 2y = cos 180° = — 1 in the formulae

(48) and (50), we have, for f»%fx,

p _ /1/ 0 JiJo _

f
1

V"i[/i(/, +/.) + (/.-/i)(/o +/. +/i)]
'

/o

p __ /i/o /l/o /•

l/i[/i (/i +/o) + (/o -/, )(/o ~/o "A)]
"

"

^

■'• Fx:-F0=fx:-f0 (53)

From which we deduce :

IS. Hie positive and negative focal planes coincide with their

correlative elementary focal planes, when the axes of the contra-

generic cylinders are at right angles to each other.

This is demonstrated in Plate IV, Fig. 2.

Between the limits of 0° and 90°, for f0 > fx ,
we have consequently

f f
found Fx to vary between the limits of

• * J °
- and fx behind the

Jo A

combined lenses, while F0 varies between the limits of oo and /0 on

the incident side of the same.

The convex cylinder being stronger than the concave, when their

axes coincide their combined refraction will evidently be equal to that

1 1 1 •

xl_

of a periscopic convex cylinder, since -=- =
— — m the active

plane ; and -=- =
— = 0 in the passive plane.

Between the same limits, when fx > /0, F0 will vary between

JiJo
— an(i fio 0n the incident side of the combined cylinders, while

./ i /o

Fx varies between co and fx behind the same. (See Plate IV.)

In this case, when the axes coincide, it is evident that the resultant

refraction will be equal to that of a periscopic concave cylinder, since

—
-r=- = — (— ) in the active plane ; and -=- =

- —

= 0 for

^o Vo At
P

Fi «

the axial plane.
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For an inequality in the refractive power of the cylinders, rotation

of one of them, from 0° to 90°, will therefore be associated with corre

sponding changes in the positions of the resultant focal planes between

the limits of infinity and the focus of the weaker cylinder on the one

side, and between that focal plane which corresponds to the difference

of their refractions and the focus of the stronger cylinder on the other.

Since in this case the approach of one focal plane is accompanied by a

corresponding recession of the other on the opposite side of the lenses,

their movements are, as in the previous theorem, in opposite directions.

When the cylinders are of equal refractive power, fx being equal to

/„, it will follow, from the relation (53), that Fx = F0, so that,

between the limits of 0° and 90°, Fx will vary between infinity and fx
on the positive side, while F0 varies between infinity and /0 on the

negative or incident side of the combined cylinders.

Consequently, when the axes coincide, 4- Fx = 4- oo and — F0 =

— oo. This is evident, since the refractions of equal convex and

concave cylinders, under such circumstances, neutralize each other

throughout.

By the previous considerations we therefore here also find :

14. The positi ve and negative focal planes are conjugate planes,

subject to variations of the angle between the axes of the contra-

generic cylinders.

The diagram, Plate III, has been constructed in accordance with

the foregoing provisions.



III. DIOPTRAL* FORMULAE.

As the task of reducing dioptres to their focal distances would

render calculation by the preceding formulae somewhat arduous, we

may here introduce the formulae, expressed in refraction, which will

be found exceedingly convenient when applied to combinations of

cylinders of the metric system more especially.

For the focal distance F, we have as the refraction ^=-
= R., and1

p^
i>

for fx and f2, similarly,
— = rx and —-

= r2, which may be un-

A J 2

derstood as signifying dioptres of refraction.

By these, and similar substitutions for other foci, we may then

write :

THE DIOPTEAL FOEMTTLU FOE COMBINED CONGENEEIG OYLLTOEES.

cos « = Jl + l r2+rx eos2y
> {W)

V 2 2
^/rxi _)_ 2rxr2 cos 2y 4- r22

Rx = V$(ri+r2)2—rxr2 sin2y 4- (rx + r2)Vj;(rx + r2)2— rxr2 sin2y.

(IID)

R2 = y %(rx+r„)2— rxr2 sin2v — (rx+r2)V]:(r1+r2)2— rxr2 sin2y.

(HLD)

To retain the significances of Rx and R
2,
in calculating, rx should

renresent the greater cylindrical refraction.

Rx = r (1 -f cos y) (IVZ>)

R2 = r (1 - cos y) (YD)

* The adaptation of this adjective would seem justifiable, since the unit

"dioptre" has been chosen in distinction to "dioptric," which, though related, has

another significance.
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THE DIOPTEAL FOEMULU FOE COMBINED OONTEA-GENEEIO CYLINDEES.

/l 1 r. —

rn cos 2y /TTT n.

cosa = \/-4--—
1 ° '

• (YID)
V 2 2 y/Vi2 _ 2rxr0 cos 2y 4- r02

Ri=VWi—roY+ riro sin2T +(ri— ro)Y'i(rx— r0)2+ rxrQ sin2y.

(YllD)

—R0=—\/%(rx—r0)2+ rxr0 sin2y + (r0— rx)y/±(rx — r0)2+ rxr0 sin2y.

(Villi))

i2j = r sin y (IXZ>)

— i?0 = — r sin y (XD)

If, in (Hi)) and (HID), the convex element r2 be replaced by the

concave element —

r0, we obtain (Y1ID) and (Villi)).

By the aid of these formulae we may also arrive at the following

significant facts.

The formulae (IID) and (HID) may be written :

Ri2 = i(ri+r2)2— rir2 sin2y + (rx + r2)V$ (rx -\-r2)2 —

rxr2 sin2 y,

R22 = %(rx+r2)2—rxr2 sin2 y
— (rx +r2)V^ (rx +r2)2 —

rxrz sin2 y,

which, by addition, result in the equation,

Rx2 4- R22 = (rx 4- r2)2 —

2rxr2 sin2 y.

.-. (Rx -4- R2)2 - 2RXR2 = (rx + r2)2 -

2rxr2 sin2 y.

.'. (Rx 4- R2f = (rx -f r2f - 2rxr2 sin2 y + 2RXR2.
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Multiplying (IID) by (HID), we find,

2RXR2 = 2rxr2 sin2 y.

.-. Rx 4- R2 = rx 4- r2 (54)

From which we conclude :

15. Tlie sum of the primary and secondary refractions is

a constant, being equal to the sum of the elementary refractions

for any combination, and all deviations of the axes of two com

bined congeneric cylinders.

In the same manner, we obtain from the formulae (YIID) and

(Villi)),

Rx — R0 = rx
—

r0, (55)

and therefore here also find,

16. The sum of the 2>rincij>al positive and negative refractions

is a constant, being equal to the sum of the positive and negative

elementary refractions for any combination, a-nd all deviations of

the axes of two combined contra-generic cylinders.

The total inherent refraction always remaining the same for any

combination, the angle y merely performs the function of allotting the

proportions of refraction Rx and R2, or Rx and R0, in the resultant

principal planes.

By the equations (54) and (55), calculation may be greatly simpli

fied. Rx being determined for a specific value of y, we may readily fix

upon R2 or R0 by these equations.

This is demonstrated in the appended tables, although it has not

been utilized in calculating ; on the contrary, a study of these led to

the above deductions.



IV. SPHERO-CYLINDRICAL

EQUIVALENCE.

Since, for any combination of cylinders, the principal planes of

refraction are at right angles to each other for all values of y, there can

be no reasonable doubts, under the provisions made at the opening of

this demonstration, as to the equivalence of a sphero-cylindrical lens to

one composed of combined cylinders. However, the use of such lenses

being at present confined to the correction of errors of refraction in the

human eye, it is evident, from the movements of the eye behind the

fixed lens, that the visual axis cannot at all times coincide with the

optical axis of the lens chosen, so that, in those practical attempts at

substitution, which may at times prove to be unsatisfactory, the cause

might seemingly be explained by the possibility of a difference becoming

manifest for the more peripheral incident rays, although equally distant

from the optical centre of either form of lens. In other words, the

available field in the one may be greater or less than in the other,

which, however, is likely to prove appreciable only in lenses of extreme

curvature, and possibly in combinations of cylinders which widely differ

in their individual refractions. This would remain to be shown.

To substitute a sphero-cylindrical lens for combined cylinders, the

proposition is merely one demanding that the "focal interval" be the

same, at the same distance from the principal plane, at the optical cen

tre, for each of the compound lenses. The distances Fx and F2 being

determined for any angular deviation y of the axes, in a combination of

congeneric cylinders, for instance, the substitution is accomplished by

making a sphero-cylindrical lens in which the focus of the spherical

element is equal to F*. and of the cylindrical element equal to

p x_p- , or, if expressed by refraction, — —

-^ sph. = -^ cyl.
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If the primary and secondary planes of the sphero-cylindrical lens

are to coincide with those resulting from a combination of two definitely

placed congeneric cylinders, the formula (I) and the articles 2 and 3 are

to be referred to.

Comparing the sphero-cylindrical equivalent with the rotating cylin

ders, reference being had to Plate II, Fig. 2, a reduction of the angle y
from 90° would be equivalent to a spherical element of the focus F2,

constantly decreasing from the focus f2 to oo, associated with a cylin
drical element of the focus Fc, constantly increasing from the focus

f\ A ft
f

*'

2f- to
' 1- 2-

; or, in other words, a gradually decreasing po-
./2 /l J 2 +/l

tency of the spherical refraction -fr,
from —

r to —

= 0, gives way
*2 A °°

to a proportionately increasing cylindrical refraction -^- ,
from —

r

*e A /s

to —z- 4- —x-
• As an instance, if fx = f2 = f, -=- will increase from

/l J2 *c
11 2
-? j-

= 0 to —

,
or twice the refraction of either cylinder. In

/ 1 J 2 J

this case, all successive values of cylindrical refraction will therefore

2
be inherent between 0 and —

r-

Should a means be devised to suppress the spherical element for

each successive value of y, the remaining varying cylindrical element

being thus rendered available for measuring corresponding degrees of

astigmatism in the eye, the formulae here advanced would prove of ser

vice in obtaining the graduations upon the rotating plates of such an

instrument.

While cases of anomalous ocular refraction demanding a correction

by combined cylinders are fortunately exceedingly rare, we may never

theless be permitted to passingly allude to certain methods of procedure

in such instances. We shall confine the subject to congeneric cylinders.

In a case of astigmatism, for which the diagnosis has resulted in fixing

upon two cylinders combined under the angle y, the lenses are to be with

drawn from the trial frame and inserted in a graduated cell, so arranged

as to facilitate their being rigidly fixed in any desired position for y.

The positions of the principal planes of refraction are then estimated

for this fixed combination, in the usual manner, without regard to the

nature of the elements constituting it ; the proportions of spherical and
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cylindrical refraction being revealed through neutralization by lenses

from the trial set. The so determined lenses are then to be substi

tuted in the trial frame, when rotation of the cylinder will lead to that

position of it which is most acceptable to the patient. The spherical

and cylindrical elements will probably then also bear of further modifi

cation, as a means of excluding any error which may have been caused

by lack of absolute contact of the original cylinders in the cell. The

formula? may be resorted to as a further and more definite verification.

It having been shown that successive changes in the angle y are

associated with corresponding changes of Fx and F2, the above sub

stitution would indeed seem advisable, since the present appliances for

grinding cylindro-cylindrical lenses are not constructed with sufficient

precision to enable opticians to fix the relative positions of the cylinders

beyond mere approximation.

As an illustration, let us select two congeneric cylinders of equal foci,

say 20 inches, combined under the angle y = 60°. Introducing these

values in the formula? (IV) and (V), we find,

F —

2Q
_

2Q
-1QQQ

% ** -

r+~c^ 60°
-

iTTO
~ 16-66>

V ■

20 20
-i0

M* ~

1 _ cos 60°
_

1 - 0.5
~"

We then obtain the cylindrical refraction -=-
,
for the desired sphero

cylindrical equivalent, from the equation,

F,

(56)
Fx F2

~

Fc

Substituting herein the calculated values for Fx and F2 gives,

_J__ i_ _1 Jl
13.33 40

~~

Fc
~

20'

1 1
— =

— being the spherical element, we therefore have the sphero

cylindrical equivalent,

^sph. C^cyl.
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as an available substitute for the cylindro-cylindrical lens,

—- cvl. axis 0°C^ cyl. axis 60°,
20

"

20
J

without regard to a definite position of these lenses before the eye.

By way of comparison, allowing the optician to make an error of

apparently so small an amount as 2°, in producing the same cylindro-

cylindrical lens, we obtain, by introducing y = 62° in the same

formulae,

F ■-

20
_

2Q
_ J°_ _ iq M

1
1 4- cos (52° ~1 + 0.469

~

1.47
—

'

_20_ 20 20

1 — cos 62°
—

1 — 0.47
"

053
F2=, ^-0 =^^ =7^ = 37.73.

Substituting these values in the equation (56), we have,

1 1

13.61 37.73 Fe 21.29'

from which we obtain the sphero-cylindrical lens,

37?73 SpU- C 2T29 CyL

Had the optician been required to make a sphero-cylindrical lens

— sph. O kk cyl. j, his execution of it presenting such discrepancies as

.t~-^ sPn- O 01 cyl., would certainly be rejected as being unsatis-

factory, a notable difference of 2.27 inches focal distance being manifest

in the spherical element.

On the other hand, instances are likely to occur for which it will be

impossible, by the advanced method of neutralization, to accurately

arrive at the sphero-cylindrical equivalent.

Since i cyl. axis 0° C ^ cyl. axis 62° = -1- sph. C^ cyl.,

we should evidently be unable to satisfactorily neutralize such spherical

and cylindrical elements by any of the lenses in the series of a trial set.

In those instances, therefore, where satisfactory neutralization of

the principal planes of refraction cannot be attained for the combined
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cylinders, in the graduated cell, the cylindro-cylindrical lens will have

to be chosen, again under the proviso, however, of a faultless mechan

ical execution. The sphero-cylindrical equivalent being, however,

generally available, ive are to suspect error in our estimation of the

refraction of an eye seeming to demand cylinders combined under acute

or obtuse angles. Having found an opportunity to apply the formulae

in practice, I take pleasure in citing the following case.

A cylindro-cylindrical lens — — cyl. axis 0° 3
—

t?S c^'
ax*s ^°

had been prescribed for Mr. G. B. Owen, of New York, by his oculist

in Philadelphia, in 1880-'!, the above correction having been worn con-

tinually since that time, while affording vision =
- for the left eye.

This case being known to me, I was anxious to make the substi

tution of the sphero-cylindrical equivalent, which I obtained as follows :

The lenses being congeneric concave cylinders of equal refraction,

by the formulae (IV) and (V), for / = 40 and y = 70°, we have,

* =

rr»2
= 29-806 = 30'

'■ =

mo«iM
= 60-79 =60'

it being admissible to neglect the fractions for such focal distances.

By article 2, we find the position of the cylindrical axis equal

£ = 35°, and consequently the sphero-cylindrical equivalent,

—

qq
sph. C —

go
cyl. axis 35°.

This lens has been substituted with the knowledge and to the

entire satisfaction of the patient.

It is therefore obvious that the meridian (125°) of greatest refrac

tion in the eye had not been disclosed by the diagnosis.
The weak spherical element, in the substituted lens, while being an

appreciable factor to the patient, might easily have been overlooked by
the practitioner.

In similar cases, the advanced formulae must prove of value in fixing

upon the true state of the refraction.



V. VERIFICATION OF THE

FORMULAE.

In the following tables, the Dioptric and Dioptral Formulae have

been applied to combinations of cylinders of the inch and metric sys

tems, respectively, it being inadmissible to substitute the generally

adopted inch-system equivalents for dioptres, in calculating, as the

frequent repetitions of the former as factors in the dioptral formulae

would increase the neglected differences to an unwarrantable degree.

For the purpose of obtaining reliable results, the calculations have

been carried to the fifth decimal place under the radicals. The

angles 30°, 45°, and 60° have been chosen so as to exhibit appreciable

differences in the corresponding resultant refractions, which are thereby

also brought within the lens-series of the inch and metric systems.

The elementary foci and refractions have, in a measure, been arbitrarily

selected, it being noticeable that the secondary refraction will generally

be beyond the limits of neutralization for combinations of weaker cylin

ders, in which the axes deviate by less than 30°.

The Approximates given for refraction, in Table 1, will at times

appear to conflict with the articles 15 and 16 ; this, however, is to be

attributed to changes of proportion occasioned by the adopted substitu

tions.

To substantiate the resultant refractions given in the tables,

through the experiment of neutralization, the cylindrical axes should

first be accurately determined, when the cylinders are to be so united

as to insure absolute contact of their plane surfaces.

Great care should also be taken to accurately and rigidly combine

the cylinders under the specified angles, as the slightest variation will

prove misleading. In the practical experiment, the observer's eye will

generally* fail to appreciate the neglect of fractions made necessary by
the available lenses of an oculist's trial case.
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1. TABLES LN VEEIFIOATION OF THE DIOPTEIO FOEMUL2E.

FOR COMBINED CONGENERIC CYLINDERS.

Elementary

Foci.

Axial

Deviation.

Primary

Focus.

Primary

Refraction.

Secondary

Focus.

Secondary

Refraction.

A <U Y F, {Approximate.) Ft (Approximate.)

16C24
a a

a a

30°

45°

60°

10.2576

11.1555

12.5559

1/10
Vu
1/12

149.7422

68.8347

40.7773

1/160
1/72
1/40 .

FOR COMBINED CONTRA-GENERIC CYLINDERS.

Elementary

Foci.

Axial

Deviation.

Positive

Focus.

Positive

Refraction.

Negative

Focus.

Negative

Refraction.

/o > /i- 7 +Fi (Approximate.) -K (Approximate.)

14 C10
ii ii

a a

35°

45°

60°

16.9799

13.2046

11.2537

+ 1/16
+ 1/13
+ 1/11

32.9799

21.2046

16.5870

-1/32
-1/22
-1/16

/o </l- Y + F1 (Approximate.) -Fo (Approximate.)

14C20
a a

a a

30°

45°

60°

47.5527

30.4131

23.7316

+ 1/48
+ 1/30
+ 1/24

23.5527

18.4131

15.7315

-1/24
-1/18
-Vl6

2. TABLES IN VEEIFIOATION OF THE DIOPTEAL F0EMULZE.

FOR COMBINED CONGENERIC CYLINDERS.

Elementary

Refractions.

Axial

Deviat'n.

Primary

Refraction.

Secondary

Refraction. Rx+Rs=

ri+r3

rx > r2 7 Bx (Approx.)

3.752).*

3.5

3.

Bs (Approx.)

2.5 C 1.52).
t i a

a a

30°

45°

60°

3.752).

3.46

3.09

0.252).

0.54

0.91

0.252).

0.5

1.

4J).

4

4

FOR COMBINED CONTRA-GENERIC CYLINDERS.

Elementary

Refractions.

Axial

Deviat'n.

Positive

Refraction.

Negative

Refraction. Bx—B0=

ri-r0

t-l > -ro 7 +Bx (Approx.) —B0 (Approx.)

+ 4C -2.752).

a a

30°

45°

60°

2.397D.

3.052

3.564

+ 2.52).

+ 3.

+ 3.5

1.1472).

1.802

2.314

-1.252).

-1.75

-2.25

+ 1.252).

+ 1.25

+ 1.25

rx < -r0 y + B1 (Approx.)
—

B0 (Approx.)
.fii— -Z?o =

rx—r0

+ 2C -2.752).
a a

30°

45°

60°

0.8562).

1.325

1.690

+ 0.752).

+ 1.25

+ 1.75

1.6062).

2.075

2.440

-1.52).

-2.

-2.5

-0.752).

-0.75

-0.75

* If 42). be written, then B^+B* = 4.252)., which would be more refraction

than is inherent in the combination, yet in neutralizing by 42). the error will scarcely
be detected.
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